| A) The Definite Integral as an Area | |
|---|---|
| I) Approximating Area with Riemann Sums | |
| 1) Estimating Area with Left and Right Sums | Ex 1 Ex 2 Ex 3 |
| II) Definition of the Definite Integral | |
| 2) Identifying the Definite Integral for a Given Area | Ex 4 Ex 5 Ex 6 Ex 7 |
| 3) Interpreting the Sign of a Definite Integral | Ex 8 Ex 9 Ex 10 Ex 11 |
| 4) Evaluating Integrals using Geometric Formulas | Ex 12 Ex 13 Ex 14 Ex 15 |
| III) Properties of the Definite Integral | |
| 5) Applying the Properties of Definite Integrals | Ex 16 Ex 17 Ex 18 Ex 19 Ex 20 |
| B) The Fundamental Theorem of Calculus | |
| I) Antiderivatives | |
| 6) Verifying Antiderivatives by Differentiation | Ex 21 Ex 22 Ex 23 Ex 24 |
| 7) Finding Antiderivatives by Inspection | Ex 25 Ex 26 Ex 27 Ex 28 |
| II) Finding Antiderivatives | |
| 8) Finding Antiderivatives of Basic Functions | Ex 29 Ex 30 Ex 31 Ex 32 Ex 33 Ex 34 |
| 9) Applying the Linearity of Integration | Ex 35 Ex 36 Ex 37 Ex 38 Ex 39 |
| 10) Applying the Reverse Chain Rule | Ex 40 Ex 41 Ex 42 Ex 43 |
| 11) Finding a Specific Antiderivative using an Initial Condition | Ex 44 Ex 45 Ex 46 |
| III) Fundamental Theorem of Calculus | |
| 12) Calculating Area using the Fundamental Theorem | Ex 47 Ex 48 Ex 49 |
| 13) Evaluating Definite Integrals: Level 1 | Ex 50 Ex 51 Ex 52 Ex 53 |
| 14) Evaluating Definite Integrals: Level 2 | Ex 54 Ex 55 Ex 56 Ex 57 |
| 15) Defining Functions using Definite Integrals | Ex 58 Ex 59 Ex 60 |
| 16) Proving the Properties of Definite Integrals | Ex 61 Ex 62 Ex 63 Ex 64 Ex 65 |
| 17) Studying Sequences Defined by Integrals | Ex 66 Ex 67 Ex 68 |
| C) Techniques for Integration | |
| I) Integration by Reverse Chain Rule | |
| 18) Finding Integrals from Derivatives | Ex 69 Ex 70 Ex 71 Ex 72 |
| II) Integration by Substitution | |
| 19) Integrating by Substitution for Indefinite Integrals | Ex 73 Ex 74 Ex 75 Ex 76 |
| 20) Evaluating Definite Integrals by Substitution | Ex 77 Ex 78 Ex 79 Ex 80 |
| III) Integration by Parts | |
| 21) Evaluating Definite Integrals by Parts | Ex 81 Ex 82 Ex 83 Ex 84 |
| 22) Applying Advanced Integration Techniques | Ex 85 Ex 86 Ex 87 Ex 88 |