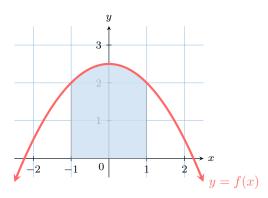
### A THE DEFINITE INTEGRAL AS AN AREA

### A.1 DEFINITION OF THE DEFINITE INTEGRAL

## A.1.1 IDENTIFYING THE DEFINITE INTEGRAL FOR A GIVEN AREA

MCQ 1:



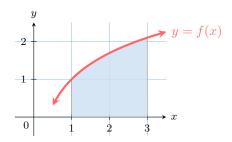
The shaded area is represented by which definite integral?

$$\Box \int_0^2 f(x) \, \mathrm{d}x$$

$$\Box \int_{-1}^{2} f(x) \, \mathrm{d}x$$

$$\Box \int_{-1}^{1} f(x) \, \mathrm{d}x$$

MCQ 2:



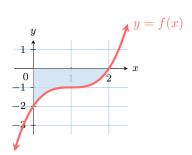
The shaded area is represented by which definite integral?

$$\Box \int_{1}^{3} f(x) \, \mathrm{d}x$$

$$\Box \int_0^3 f(x) \, \mathrm{d}x$$

$$\Box \int_{1}^{2} f(x) \, \mathrm{d}x$$

MCQ 3:



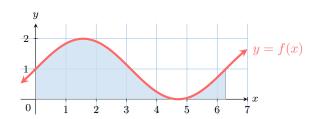
The shaded area is represented by which definite integral?

$$\Box \int_0^1 f(x) \, \mathrm{d}x$$

$$\Box \int_0^2 f(x) \, \mathrm{d}x$$

$$\Box \int_{1}^{2} f(x) \, \mathrm{d}x$$

MCQ 4:



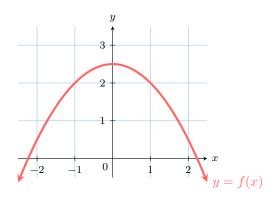
The shaded area is represented by which definite integral?

$$\Box \int_0^{2\pi} f(x) \, \mathrm{d}x$$

$$\Box \int_{-\pi}^{\pi} f(x) \, \mathrm{d}x$$

## A.1.2 INTERPRETING THE SIGN OF A DEFINITE INTEGRAL

MCQ 5:

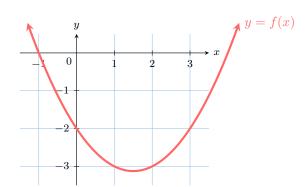


Considering the graph of the function f(x) above, determine the sign of the definite integral  $\int_{-1}^{1} f(x) dx$ .

□ Positive

□ Negative

MCQ 6:

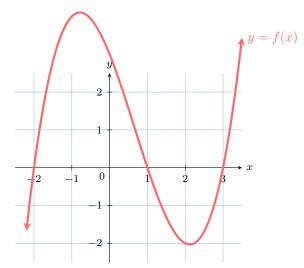


Considering the graph of the function f(x) above, determine the sign of the definite integral  $\int_0^3 f(x) dx$ .

☐ Positive

□ Negative

MCQ 7:

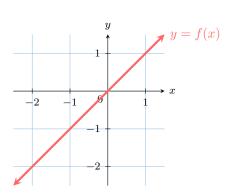


Considering the graph of the function f(x) above, determine the sign of the definite integral  $\int_{-2}^{3} f(x) dx$ .

 $\square$  Positive

□ Negative

MCQ 8:



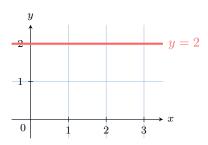
Considering the graph of the function f(x) = x above, determine the sign of the definite integral  $\int_{-2}^{1} f(x) dx$ .

□ Positive

□ Negative

## A.1.3 EVALUATING INTEGRALS USING GEOMETRIC FORMULAS

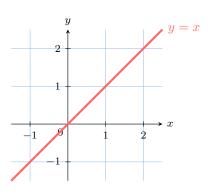
Ex 9:



Using the geometric interpretation of the integral as an area, find:

$$\int_0^3 2 \, \mathrm{d}x = \boxed{\phantom{a}}$$

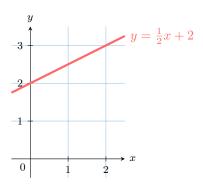
Ex 10:



Using the geometric interpretation of the integral as a signed area, find:

$$\int_{-1}^{2} x \, \mathrm{d}x =$$

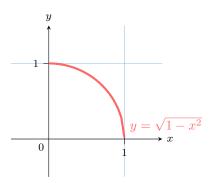
Ex 11:



Using the geometric interpretation of the integral as an area, find:

$$\int_0^2 \left(\frac{1}{2}x + 2\right) \, \mathrm{d}x = \square$$

Ex 12:



Using the geometric interpretation of the integral as an area, find:

$$\int_0^1 \sqrt{1 - x^2} \, \mathrm{d}x = \boxed{\phantom{a}}$$

### A.2 PROPERTIES OF THE DEFINITE INTEGRAL

## A.2.1 APPLYING THE PROPERTIES OF DEFINITE INTEGRALS

**Ex 13:** For a function f,  $\int_0^1 f(x) dx = 2$  and  $\int_1^2 f(x) dx = 1$ , find:

$$\int_0^2 f(x) \, \mathrm{d}x = \boxed{}$$

$$\int_0^0 f(x) \, \mathrm{d}x = \boxed{}$$

$$\int_0^2 4f(x) \, \mathrm{d}x = \boxed{}$$

**Ex 14:** Given that  $\int_1^3 f(x) dx = 4$  and  $\int_1^3 g(x) dx = -2$ , find:

$$\int_{1}^{3} (f(x) + g(x)) dx = \boxed{$$

$$\int_{1}^{3} (2f(x) - 3g(x)) dx = \boxed{}$$

**Ex 15:** Given that  $\int_0^3 f(x) dx = -5$  and  $\int_0^1 f(x) dx = 2$ , find the value of  $\int_0^3 f(x) dx$ .

$$\int_{1}^{3} f(x) \, \mathrm{d}x = \boxed{\phantom{a}}$$

**Ex 16:** Given that  $\int_{2}^{5} f(x) dx = 10$  and  $\int_{2}^{5} g(x) dx = 3$ , find:

$$\int_{2}^{5} (f(x) - g(x)) dx = \boxed{$$

$$\int_{2}^{5} 5g(x) dx = \boxed{}$$

**Ex 17:** Given that  $\int_{-1}^{4} h(x) dx = 6$  and  $\int_{2}^{4} h(x) dx = 5$ , find

the value of 
$$\int_{-1}^{2} h(x) dx$$
.

$$\int_{-1}^{2} h(x) \, \mathrm{d}x = \boxed{\phantom{a}}$$

# B THE FUNDAMENTAL THEOREM OF CALCULUS

### **B.1 ANTIDERIVATIVES**

## B.1.1 VERIFYING DIFFERENTIATION

**ANTIDERIVATIVES** 

BY

**MCQ 18:** Is the function F(x) = 2x an antiderivative of the function f(x) = 2?

- ☐ Yes
- □ No

MCQ 19: Is the function  $F(x) = \frac{1}{4}x^4$  an antiderivative of the function  $f(x) = x^3$ ?

- ☐ Yes
- □ No

**MCQ 20:** Is the function  $F(x) = e^{3x}$  an antiderivative of the function  $f(x) = e^{3x}$ ?

- ☐ Yes
- □ No

MCQ 21: Is the function  $F(x) = -\cos(x)$  an antiderivative of the function  $f(x) = \sin(x)$ ?

- ☐ Yes
- $\square$  No

### **B.1.2 FINDING ANTIDERIVATIVES BY INSPECTION**

**Ex 22:** Find an antiderivative of f(x) = x.

$$F(x) =$$

**Ex 23:** Find an antiderivative of  $f(x) = x^2$ .

$$F(x) =$$

**Ex 24:** Find an antiderivative of  $f(x) = x^{-2}$ .

$$F(x) =$$

**Ex 25:** Find an antiderivative of  $f(x) = e^{2x}$ .

$$F(x) =$$

### **B.2 FINDING ANTIDERIVATIVES**

## B.2.1 FINDING ANTIDERIVATIVES OF BASIC FUNCTIONS

**Ex 26:** Find the indefinite integral of  $f(x) = x^4$ .

$$\int x^4 dx = \boxed{}$$

**Ex 27:** Find the indefinite integral of  $f(x) = \cos(x)$ .

$$\int \cos(x) \, dx = \boxed{}$$

**Ex 28:** Find the indefinite integral of  $f(x) = x^{-3}$ .

$$\int x^{-3} dx = \boxed{}$$

**Ex 29:** Find the indefinite integral of  $f(x) = \frac{1}{x^2}$ .

$$\int \frac{1}{x^2} dx = \boxed{}$$

**Ex 30:** Find the indefinite integral of  $f(x) = \frac{1}{\sqrt{x}}$ .

$$\int \frac{1}{\sqrt{x}} \, dx = \boxed{}$$

**Ex 31:** Find the indefinite integral of  $f(x) = e^x$ .

$$\int e^x \, dx = \boxed{\phantom{a}}$$

### **B.2.2 APPLYING THE LINEARITY OF INTEGRATION**

**Ex 32:** Find the indefinite integral of  $f(x) = 3x^2 - 4x + 5$ .

$$\int (3x^2 - 4x + 5) \, dx = \boxed{}$$

**Ex 33:** Find the indefinite integral of  $f(x) = 2e^x + x^3$ .

$$\int (2e^x + x^3) \, dx = \boxed{$$

**Ex 34:** Find the indefinite integral of  $f(x) = 4\sin(x) - 7$ .

$$\int (4\sin(x) - 7) \, dx = \boxed{$$

**Ex 35:** Find the indefinite integral of  $f(x) = 4\sqrt{x} + \frac{6}{x^3}$ .

$$\int \left(4\sqrt{x} + \frac{6}{x^3}\right) dx = \boxed{$$

**Ex 36:** Find the indefinite integral of  $f(x) = \frac{5}{x} - 2\cos(x)$ .

$$\int \left(\frac{5}{x} - 2\cos(x)\right) dx = \boxed{}$$

### **B.2.3 APPLYING THE REVERSE CHAIN RULE**

**Ex 37:** Find the indefinite integral of  $f(x) = 2x(x^2 + 2)^3$ .

$$\int 2x(x^2+2)^3 dx =$$

**Ex 38:** Find the indefinite integral of  $f(x) = 2xe^{x^2}$ .

$$\int 2xe^{x^2} dx =$$

**Ex 39:** Find the indefinite integral of  $f(x) = x^2(x^3 + 1)^4$ .

$$\int x^2 (x^3 + 1)^4 \, dx = \boxed{}$$

**Ex 40:** Find the indefinite integral of  $f(x) = \frac{x}{x^2+1}$ .

$$\int \frac{x}{x^2+1} \, dx =$$

## B.2.4 FINDING A SPECIFIC ANTIDERIVATIVE USING AN INITIAL CONDITION

**Ex 41:** Find the function f(x) given that f'(x) = x + 1 and f(0) = 1.

$$f(x) =$$

**Ex 42:** Find the function f(x) given that  $f'(x) = e^x$  and f(0) = 3

$$f(x) =$$

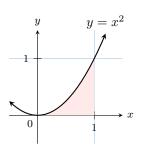
**Ex 43:** Find the function f(x) given that  $f'(x) = \cos(x)$  and  $f(\pi) = 1$ .

$$f(x) =$$

### **B.3 FUNDAMENTAL THEOREM OF CALCULUS**

# B.3.1 CALCULATING AREA USING THE FUNDAMENTAL THEOREM

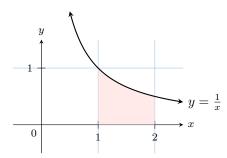
Ex 44:



Find the area of the region enclosed by the x-axis, the curve  $y = x^2$ , and the lines x = 0 and x = 1.

$$Area =$$
 units<sup>2</sup>

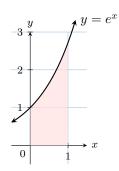
Ex 45:



Find the area of the region enclosed by the x-axis, the curve  $y = \frac{1}{x}$ , and the lines x = 1 and x = 2.



Ex 46:



Find the area of the region enclosed by the x-axis, the curve  $y = e^x$ , and the lines x = 0 and x = 1.

$$Area =$$
 units<sup>2</sup>

### **B.3.2 EVALUATING DEFINITE INTEGRALS: LEVEL 1**

Ex 47: Find the value of the definite integral:

$$\int_0^3 x \, dx = \boxed{\phantom{a}}$$

Ex 48: Find the value of the definite integral:

$$\int_0^{\pi} \sin(x) \, dx = \boxed{\phantom{a}}$$

Ex 49: Find the value of the definite integral:

Ex 50: Find the value of the definite integral:

$$\int_{1}^{e} \frac{1}{x} dx = \boxed{\phantom{a}}$$

### **B.3.3 EVALUATING DEFINITE INTEGRALS: LEVEL 2**

Ex 51: Find the value of the definite integral:

$$\int_{1}^{2} (3x^{2} + 2x - 1) dx = \square$$

**Ex 52:** Find the value of the definite integral:

$$\int_{\pi/2}^{\pi} (2\sin(x) + \cos(x)) dx = \boxed{}$$

**Ex 53:** Find the value of the definite integral:

$$\int_{1}^{3} \frac{6}{x^3} dx =$$

Ex 54: Find the value of the definite integral:

$$\int_0^1 2xe^{x^2} dx = \boxed{}$$

## B.3.4 DEFINING FUNCTIONS USING DEFINITE INTEGRALS

**Ex 55:** Find the function F(x) defined by the definite integral:

$$F(x) = \int_{\pi/2}^{x} \cos(t) dt$$

$$F(x) =$$

**Ex 56:** Find the function F(x) defined by the definite integral:

$$F(x) = \int_{1}^{x} \frac{1}{t} dt \quad \text{for } x > 0$$

$$F(x) =$$

**Ex 57:** Find the function F(x) defined by the definite integral:

$$F(x) = \int_0^x (u^2 + 1) \, du$$

$$F(x) =$$

## B.3.5 STUDYING SEQUENCES DEFINED BY INTEGRALS

**Ex 58:** A sequence  $(u_n)$  is defined for  $n \ge 0$  by the integral:

$$u_n = \int_0^1 x^n \, dx$$

- 1. Calculate the first three terms of the sequence:  $u_0$ ,  $u_1$ , and  $u_2$ .
- 2. Find a general formula for  $u_n$ .
- $\bullet u_0 =$
- $\bullet$   $u_1 =$
- $\bullet$   $u_2 =$
- $\bullet$   $u_n =$

**Ex 59:** A sequence  $(u_n)$  is defined for  $n \geq 0$  by the integral:

$$u_n = \int_0^1 \frac{x^n}{1+x} \, dx$$

1. Calculate  $u_0$ .

- 2. Prove that for any integer  $n \geq 0$ , the recurrence relation  $u_{n+1} + u_n = \frac{1}{n+1}$  holds.
- 3. Hence, deduce the value of  $u_1$ .

**Ex 60:** A sequence  $(u_n)$  is defined for any integer n > 0 by the integral:

$$u_n = \int_0^1 \frac{e^{nx}}{1 + e^x} \, dx$$

- 1. Calculate  $u_1$ .
- 2. Prove that for any integer n > 0, the following recurrence relation holds:

$$u_{n+1} + u_n = \frac{e^n - 1}{n}$$

3. Hence, deduce the value of  $u_2$ .

1. Find the derivative of  $\arcsin(x)$ .

$$\frac{d}{dx}(\arcsin(x)) =$$

2. Hence, find the indefinite integral  $\int \frac{1}{\sqrt{1-x^2}} dx$ .

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \boxed{$$

### Ex 62:

1. Find the derivative of  $f(x) = \arctan(x)$ .

$$\frac{d}{dx}(\arctan(x)) =$$

2. Hence, find the indefinite integral  $\int \frac{1}{1+x^2} dx$ .

$$\int \frac{1}{1+x^2} \, dx = \boxed{$$

### Ex 63:

1. Find the derivative of  $f(x) = \ln(\cos(x))$ .

$$\frac{d}{dx}(\ln(\cos(x))) =$$

2. Hence, find the indefinite integral  $\int \tan(x) dx$ .

$$\int \tan(x) \, dx =$$

### Ex 64:

1. Find the derivative of  $f(x) = x \ln(x) - x$ .

$$\frac{d}{dx}(x\ln(x) - x) = \boxed{}$$

2. Hence, find the indefinite integral  $\int \ln(x) dx$ .

$$\int \ln(x) \, dx = \boxed{}$$

### **C.2 INTEGRATION BY SUBSTITUTION**

#### C.2.1 INTEGRATING BY **SUBSTITUTION FOR** INDEFINITE INTEGRALS

**Ex 65:** Find the indefinite integral of  $f(x) = 2x \cos(x^2)$ .

$$\int 2x \cos(x^2) \ dx = \boxed{}$$

**Ex 66:** Find the indefinite integral of  $f(x) = 3x^2(x^3 + 5)^4$ .

$$\int 3x^2(x^3+5)^4 \, dx = \boxed{}$$

**Ex 67:** Find the indefinite integral of  $f(x) = \frac{4x^3}{x^4+1}$ .

$$\int \frac{4x^3}{x^4+1} dx = \boxed{$$

**Ex 68:** Find the indefinite integral of  $f(x) = \cos^3(x)\sin(x)$ .

$$\int \cos^3(x)\sin(x) \ dx =$$

### C TECHNIQUES FOR INTEGRATION

### C.1 INTEGRATION BY REVERSE CHAIN RULE

### C.1.1 FINDING INTEGRALS FROM DERIVATIVES

Ex 61:

# C.2.2 EVALUATING DEFINITE INTEGRALS BY SUBSTITUTION

**Ex 69:** Find the value of the definite integral  $\int_0^{\sqrt{\pi}} 2x \cos(x^2) dx$ .

$$\int_0^{\sqrt{\pi}} 2x \cos(x^2) \ dx = \boxed{\phantom{a}}$$

**Ex 70:** Find the value of the definite integral  $\int_0^1 \frac{x}{x^2 + 1} dx$ .

$$\int_0^1 \frac{x}{x^2 + 1} \, dx = \boxed{$$

Ex 71: Find the value of the definite integral  $\int_0^{\pi/2} \cos^3(x) \sin(x) \, dx.$ 

$$\int_0^{\pi/2} \cos^3(x) \sin(x) \ dx = \boxed{$$

**Ex 72:** Find the value of the definite integral  $\int_0^1 6xe^{x^2} dx$ .

$$\int_0^1 6x e^{x^2} \ dx = \boxed{$$