| A) Complex Plane | |
|---|---|
| 1) Reading the Affix of a Point | Ex 1 Ex 2 Ex 3 Ex 4 |
| 2) Conjecturing the Nature of a Figure | Ex 5 Ex 6 Ex 7 |
| B) Modulus and Argument | |
| 3) Calculating the Modulus of a Complex Number | Ex 8 Ex 9 Ex 10 Ex 11 |
| 4) Calculating the Argument of a Complex Number | Ex 12 Ex 13 Ex 14 |
| C) Unit Modulus Complex Numbers and the Imaginary Exponential | |
| 5) Finding the Affix of a Point on the Unit Circle | Ex 15 Ex 16 Ex 17 Ex 18 |
| 6) Evaluating Complex Exponentials | Ex 19 Ex 20 Ex 21 Ex 22 |
| 7) Applying the Properties of Exponents | Ex 23 Ex 24 Ex 25 Ex 26 Ex 27 Ex 28 |
| D) Polar and Euler's Forms | |
| 8) Converting from Polar to Standard Form | Ex 29 Ex 30 Ex 31 Ex 32 |
| 9) Converting from Standard to Polar Form | Ex 33 Ex 34 Ex 35 |
| 10) Converting from Polar to Euler's Form | Ex 36 Ex 37 Ex 38 |
| E) De Moivre's Theorem | |
| 11) Applying De Moivre's Theorem | Ex 39 Ex 40 Ex 41 |
| F) Properties of Modulus and Argument | |
| 12) Proving the Properties of the Modulus | Ex 42 Ex 43 Ex 44 |
| 13) Proving the Properties of the Argument | Ex 45 Ex 46 Ex 47 |
| G) Geometry in the Coordinate Plane | |
| 14) Visualizing Fundamental Transformations | Ex 48 Ex 49 Ex 50 Ex 51 |
| 15) Calculating Distances, Midpoints, and Angles | Ex 52 Ex 53 Ex 54 Ex 55 |
| 16) Proving the Nature of Geometric Figures | Ex 56 Ex 57 Ex 58 |
| H) Geometric Loci in the Complex Plane | |
| 17) Plotting Lines | Ex 59 Ex 60 Ex 61 Ex 62 |
| 18) Plotting Rays in the Complex Plane | Ex 63 Ex 64 Ex 65 |
| 19) Identifying Loci from Modulus Equations | Ex 66 Ex 67 Ex 68 Ex 69 |
| I) Roots of Complex Numbers | |
| 20) Finding the n-th Roots of a Complex Number | Ex 70 Ex 71 Ex 72 Ex 73 Ex 74 |