| A) The Definite Integral as an Area | |
|---|---|
| I) Definition of the Definite Integral | |
| 1) Identifying the Definite Integral for a Given Area | Ex 1 Ex 2 Ex 3 Ex 4 |
| 2) Interpreting the Sign of a Definite Integral | Ex 5 Ex 6 Ex 7 Ex 8 |
| 3) Evaluating Integrals using Geometric Formulas | Ex 9 Ex 10 Ex 11 Ex 12 |
| II) Properties of the Definite Integral | |
| 4) Applying the Properties of Definite Integrals | Ex 13 Ex 14 Ex 15 Ex 16 Ex 17 |
| B) The Fundamental Theorem of Calculus | |
| I) Antiderivatives | |
| 5) Verifying Antiderivatives by Differentiation | Ex 18 Ex 19 Ex 20 Ex 21 |
| 6) Finding Antiderivatives by Inspection | Ex 22 Ex 23 Ex 24 Ex 25 |
| II) Finding Antiderivatives | |
| 7) Finding Antiderivatives of Basic Functions | Ex 26 Ex 27 Ex 28 Ex 29 Ex 30 Ex 31 |
| 8) Applying the Linearity of Integration | Ex 32 Ex 33 Ex 34 Ex 35 Ex 36 |
| 9) Applying the Reverse Chain Rule | Ex 37 Ex 38 Ex 39 Ex 40 |
| 10) Finding a Specific Antiderivative using an Initial Condition | Ex 41 Ex 42 Ex 43 |
| III) Fundamental Theorem of Calculus | |
| 11) Calculating Area using the Fundamental Theorem | Ex 44 Ex 45 Ex 46 |
| 12) Evaluating Definite Integrals: Level 1 | Ex 47 Ex 48 Ex 49 Ex 50 |
| 13) Evaluating Definite Integrals: Level 2 | Ex 51 Ex 52 Ex 53 Ex 54 |
| 14) Defining Functions using Definite Integrals | Ex 55 Ex 56 Ex 57 |
| 15) Studying Sequences Defined by Integrals | Ex 58 Ex 59 Ex 60 |
| C) Techniques for Integration | |
| I) Integration by Reverse Chain Rule | |
| 16) Finding Integrals from Derivatives | Ex 61 Ex 62 Ex 63 Ex 64 |
| II) Integration by Substitution | |
| 17) Integrating by Substitution for Indefinite Integrals | Ex 65 Ex 66 Ex 67 Ex 68 |
| 18) Evaluating Definite Integrals by Substitution | Ex 69 Ex 70 Ex 71 Ex 72 |