| A) Definitions | |
|---|---|
| 1) Determining the Degree of Vertices | Ex 1 Ex 2 Ex 3 Ex 4 Ex 5 Ex 6 |
| 2) Identifying Paths and Circuits | Ex 7 Ex 8 Ex 9 Ex 10 |
| 3) Analyzing Paths in Weighted Graphs | Ex 11 Ex 12 Ex 13 Ex 14 |
| 4) Modelling Situations with Graphs | Ex 15 Ex 16 Ex 17 Ex 18 Ex 19 |
| 5) Classifying Sequences of Vertices | Ex 20 Ex 21 Ex 22 Ex 23 |
| B) Properties of Graphs | |
| 6) Identifying Graph Properties | Ex 24 Ex 25 Ex 26 |
| C) Adjacency Matrices | |
| 7) Writing Adjacency Matrices | Ex 27 Ex 28 Ex 29 Ex 30 |
| 8) Determining the Number of Walks | Ex 31 Ex 32 Ex 33 |
| D) Trees and Minimum Spanning Trees | |
| 9) Identifying Trees | Ex 34 Ex 35 |
| 10) Optimizing Networks | Ex 36 Ex 37 Ex 38 |
| 11) Determining the Minimum Spanning Tree | Ex 39 Ex 40 Ex 41 |
| E) Eulerian Graphs | |
| 12) Identifying Eulerian Circuits and Trails | Ex 42 Ex 43 Ex 44 |
| 13) Solving the Chinese Postman Problem | Ex 45 Ex 46 Ex 47 |
| F) Hamiltonian Graphs | |
| 14) Identifying Hamiltonian Paths and Cycles | Ex 48 Ex 49 Ex 50 |
| 15) Finding Optimal Tour Bounds | Ex 51 Ex 52 Ex 53 Ex 54 |