\( \definecolor{colordef}{RGB}{249,49,84} \definecolor{colorprop}{RGB}{18,102,241} \)
Courses
About
Login
Register
Consider the following weighted directed graph representing latency (in ms) in a complex computer network from a source server \(S\) to a destination server \(E\).
What is the weight of the directed edge from \(B\) to \(A\)?
\(\pi\)
\(e\)
\(x\)
\(n\)
\(u_n\)
\(f\)
\(i\)
\(\frac{a}{b}\)
\(\sqrt{\,}\)
\({a}^{b}\)
\(\ln{\,}\)
\(\log{\,}\)
!
\(C\)
7
8
9
←
→
\(\sin{\,}\)
4
5
6
(
)
\(\cos{\,}\)
1
2
3
\(\times\)
\(\div\)
\(\tan{\,}\)
C
0
.
+
-
=
Calculate the total weight of the path \(S \to B \to A \to C \to D \to E\).
\(\pi\)
\(e\)
\(x\)
\(n\)
\(u_n\)
\(f\)
\(i\)
\(\frac{a}{b}\)
\(\sqrt{\,}\)
\({a}^{b}\)
\(\ln{\,}\)
\(\log{\,}\)
!
\(C\)
7
8
9
←
→
\(\sin{\,}\)
4
5
6
(
)
\(\cos{\,}\)
1
2
3
\(\times\)
\(\div\)
\(\tan{\,}\)
C
0
.
+
-
=
Find the lowest total weight of a path from \(S\) to \(E\).
\(\pi\)
\(e\)
\(x\)
\(n\)
\(u_n\)
\(f\)
\(i\)
\(\frac{a}{b}\)
\(\sqrt{\,}\)
\({a}^{b}\)
\(\ln{\,}\)
\(\log{\,}\)
!
\(C\)
7
8
9
←
→
\(\sin{\,}\)
4
5
6
(
)
\(\cos{\,}\)
1
2
3
\(\times\)
\(\div\)
\(\tan{\,}\)
C
0
.
+
-
=
Exit