\( \definecolor{colordef}{RGB}{249,49,84} \definecolor{colorprop}{RGB}{18,102,241} \)
Consider the differential equation \(\dfrac{dy}{dx} = x - y\) with the initial condition \(y(0)=1\).
Using Euler's method with a step size of \(h=0.5\), find approximations for \(y(0.5)\), \(y(1.0)\), and \(y(1.5)\).
  • \(y(0.5) \approx\)
  • \(y(1.0) \approx\)
  • \(y(1.5) \approx\)