\( \definecolor{colordef}{RGB}{249,49,84} \definecolor{colorprop}{RGB}{18,102,241} \)
Given the Maclaurin series for \(\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots\), write down the Maclaurin polynomial of degree 3, \(P_3(x)\).
\(P_3(x)=\)