\( \definecolor{colordef}{RGB}{249,49,84} \definecolor{colorprop}{RGB}{18,102,241} \)
Courses
About
Login
Register
For the function \(f(x)=\ln(1-x)\),
Find \(f^{(1)}(x)\), \(f^{(2)}(x)\), and \(f^{(3)}(x)\).
Find \(f(0)\), \(f'(0)\), \(f^{(2)}(0)\), and \(f^{(3)}(0)\).
Show that the Maclaurin series for \(\ln(1-x)\) is$$ \ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots = -\sum_{k=1}^\infty \frac{x^k}{k} $$
Capture an image of your work. AI teacher feedback takes approximately 10 seconds.
Exit