Since \(n\) is large, the Central Limit Theorem applies. The sampling distribution of the mean \(\overline{X}_n\) is approximately normal with mean \(\mu\) and standard deviation \(\dfrac{\sigma}{\sqrt{n}}\).
The standardized variable \(Z\) follows a standard normal distribution:$$ Z = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1). $$For a \(95\pourcent\) confidence level, we seek the critical value \(z\) such that \(P(-z \leqslant Z \leqslant z) = 0.95\).

Using a calculator (Inverse Normal), we find \(z \approx 1.96\).$$\begin{aligned}P\left(-1.96 \leqslant \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \leqslant 1.96\right) &= 0.95 \\
P\left(-1.96 \frac{\sigma}{\sqrt{n}} \leqslant \overline{X}_n - \mu \leqslant 1.96 \frac{\sigma}{\sqrt{n}}\right) &= 0.95 \\
P\left(\overline{X}_n - 1.96 \frac{\sigma}{\sqrt{n}} \leqslant \mu \leqslant \overline{X}_n + 1.96 \frac{\sigma}{\sqrt{n}}\right) &= 0.95.\end{aligned}$$This is the stated probability interval.