Calculating powers of a matrix \(\mathbf{A}\) (such as \(\mathbf{A}^{10}\)) by repeated multiplication is tedious. However, if we diagonalise the matrix first, the process becomes much simpler.
If \(\mathbf{A}\) is diagonalisable, we can write$$ \mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}, $$where \(\mathbf{D}\) is diagonal. To calculate \(\mathbf{A}^n\):$$\begin{aligned}\mathbf{A}^n &= \underbrace{\mathbf{A}\mathbf{A}\dots \mathbf{A}}_{n \text{ times}}\\
&= \underbrace{(\mathbf{P}\mathbf{D}\mathbf{P}^{-1}) (\mathbf{P}\mathbf{D}\mathbf{P}^{-1}) \dots (\mathbf{P}\mathbf{D}\mathbf{P}^{-1})}_{n \text{ times}} && \text{(substitute } \mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1})\\
&= \mathbf{P}\mathbf{D}(\mathbf{P}^{-1}\mathbf{P})\mathbf{D} (\mathbf{P}^{-1}\mathbf{P})\dots\mathbf{D}\mathbf{P}^{-1} && \text{(regroup terms)}\\
&= \mathbf{P}\mathbf{D}\mathbf{I}\mathbf{D}\mathbf{I}\dots\mathbf{D}\mathbf{P}^{-1} && \text{(since } \mathbf{P}^{-1}\mathbf{P} = \mathbf{I})\\
&= \mathbf{P}(\mathbf{D}\mathbf{D}\dots\mathbf{D})\mathbf{P}^{-1}\\
&= \mathbf{P}\mathbf{D}^n\mathbf{P}^{-1}.\end{aligned}$$It is easy to raise a diagonal matrix to a power. If$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\
0 & \lambda_2 \end{pmatrix},$$then$$\begin{aligned}\mathbf{D}^2 &=\begin{pmatrix} \lambda_1 & 0 \\
0 & \lambda_2 \end{pmatrix}\begin{pmatrix} \lambda_1 & 0 \\
0 & \lambda_2 \end{pmatrix}= \begin{pmatrix} \lambda_1^2 & 0 \\
0 & \lambda_2^2 \end{pmatrix},\\
\mathbf{D}^3 &= \mathbf{D}^2\mathbf{D}= \begin{pmatrix} \lambda_1^2 & 0 \\
0 & \lambda_2^2 \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\
0 & \lambda_2 \end{pmatrix}= \begin{pmatrix} \lambda_1^3 & 0 \\
0 & \lambda_2^3 \end{pmatrix},\\
&\vdots\\
\mathbf{D}^n &= \begin{pmatrix} \lambda_1^n & 0 \\
0 & \lambda_2^n \end{pmatrix}.\end{aligned}$$