The \(x\)-values increase by a constant step of 1.
First, we check for a common difference: \(6-2=4\), but \(18-6=12\). The difference is not constant, so the relationship is not linear.
Next, we check for a common ratio between consecutive \(y\)-values:
- \(\frac{y_2}{y_1} = \frac{6}{2} = \boldsymbol{3}\)
- \(\frac{y_3}{y_2} = \frac{18}{6} = \boldsymbol{3}\)
- \(\frac{y_4}{y_3} = \frac{54}{18} = \boldsymbol{3}\)
Since the ratio is constant, the relationship is
exponential.$$\begin{aligned}x: &\ 0\ & \textcolor{colordef}{\xrightarrow{\;+1\;}} &\ 1\ & \textcolor{colordef}{\xrightarrow{\;+1\;}} &\ 2\ & \textcolor{colordef}{\xrightarrow{\;+1\;}} &\ 3 \\
y: &\ 2\ & \textcolor{colorprop}{\xrightarrow{\;\times 3\;}} &\ 6\ & \textcolor{colorprop}{\xrightarrow{\;\times 3\;}} &\ 18\ & \textcolor{colorprop}{\xrightarrow{\;\times 3\;}} &\ 54 \\
\end{aligned}$$