\( \definecolor{colordef}{RGB}{249,49,84} \definecolor{colorprop}{RGB}{18,102,241} \)
Courses
About
Login
Register
A sequence is defined recursively by:
\(u_0 = 1\).
\(u_{n+1} = u_n + \frac{1}{2}\).
Find the first four terms of this sequence (from \(u_0\) to \(u_3\)).
\(u_0=\)
\(\pi\)
\(e\)
\(x\)
\(n\)
\(u_n\)
\(f\)
\(i\)
\(\frac{a}{b}\)
\(\sqrt{\,}\)
\({a}^{b}\)
\(\ln{\,}\)
\(\log{\,}\)
!
\(C\)
7
8
9
←
→
\(\sin{\,}\)
4
5
6
(
)
\(\cos{\,}\)
1
2
3
\(\times\)
\(\div\)
\(\tan{\,}\)
C
0
.
+
-
=
\(u_1=\)
\(\pi\)
\(e\)
\(x\)
\(n\)
\(u_n\)
\(f\)
\(i\)
\(\frac{a}{b}\)
\(\sqrt{\,}\)
\({a}^{b}\)
\(\ln{\,}\)
\(\log{\,}\)
!
\(C\)
7
8
9
←
→
\(\sin{\,}\)
4
5
6
(
)
\(\cos{\,}\)
1
2
3
\(\times\)
\(\div\)
\(\tan{\,}\)
C
0
.
+
-
=
\(u_2=\)
\(\pi\)
\(e\)
\(x\)
\(n\)
\(u_n\)
\(f\)
\(i\)
\(\frac{a}{b}\)
\(\sqrt{\,}\)
\({a}^{b}\)
\(\ln{\,}\)
\(\log{\,}\)
!
\(C\)
7
8
9
←
→
\(\sin{\,}\)
4
5
6
(
)
\(\cos{\,}\)
1
2
3
\(\times\)
\(\div\)
\(\tan{\,}\)
C
0
.
+
-
=
\(u_3=\)
\(\pi\)
\(e\)
\(x\)
\(n\)
\(u_n\)
\(f\)
\(i\)
\(\frac{a}{b}\)
\(\sqrt{\,}\)
\({a}^{b}\)
\(\ln{\,}\)
\(\log{\,}\)
!
\(C\)
7
8
9
←
→
\(\sin{\,}\)
4
5
6
(
)
\(\cos{\,}\)
1
2
3
\(\times\)
\(\div\)
\(\tan{\,}\)
C
0
.
+
-
=
Exit