Let \(\textcolor{colordef}{\triangle ABC}\) be a triangle, with a point \(\textcolor{colorprop}{D}\) on the line \(\Line{A\textcolor{colordef}{B}}\) and a point \(\textcolor{colorprop}{E}\) on the line \(\Line{A\textcolor{colordef}{C}}\).
If the line \(\textcolor{colorprop}{\Line{DE}}\) is parallel to the line \(\textcolor{colordef}{\Line{BC}}\), then the triangles \(\textcolor{colordef}{\triangle ABC}\) and \(\textcolor{colorprop}{\triangle ADE}\) are similar:$$\dfrac{A\textcolor{colorprop}{D}}{A\textcolor{colordef}{B}} = \dfrac{A\textcolor{colorprop}{E}}{A\textcolor{colordef}{C}} = \dfrac{\textcolor{colorprop}{DE}}{\textcolor{colordef}{BC}}$$
Thales’s Configurations: Key Figures



Each red triangle is similar to the blue triangle.