Multiplication and division are inverse operations:$$\textcolor{black}{3}\times \textcolor{black}{2}=\textcolor{black}{6}, \text{ so }\textcolor{black}{6}\div \textcolor{black}{3}=\textcolor{black}{2}.$$(Here we only divide by non-zero numbers.)
Now, let's look at division with negative numbers:
- \(\textcolor{colordef}{(+)} \div \textcolor{colordef}{(+)}\):$$\textcolor{colordef}{(+3)} \times \textcolor{colordef}{(+2)}=\textcolor{colordef}{+6}, \text{ so }\textcolor{colordef}{(+6)} \div \textcolor{colordef}{(+3)}=\textcolor{colordef}{(+2)}.$$So, a positive divided by a positive gives a positive.
- \(\textcolor{colordef}{(+)} \div \textcolor{colorprop}{(-)}\):$$\textcolor{colorprop}{(-3)} \times \textcolor{colorprop}{(-2)}=\textcolor{colordef}{+6}, \text{ so }\textcolor{colordef}{(+6)} \div \textcolor{colorprop}{(-3)}=\textcolor{colorprop}{(-2)}.$$So, a positive divided by a negative gives a negative.
- \(\textcolor{colorprop}{(-)} \div \textcolor{colordef}{(+)}\):$$\textcolor{colordef}{(+3)} \times \textcolor{colorprop}{(-2)}=\textcolor{colorprop}{-6}, \text{ so }\textcolor{colorprop}{(-6)} \div \textcolor{colordef}{(+3)}=\textcolor{colorprop}{(-2)}.$$So, a negative divided by a positive gives a negative.
- \(\textcolor{colorprop}{(-)} \div \textcolor{colorprop}{(-)}\):$$\textcolor{colorprop}{(-3)} \times \textcolor{colordef}{(+2)}=\textcolor{colorprop}{-6}, \text{ so }\textcolor{colorprop}{(-6)} \div \textcolor{colorprop}{(-3)}=\textcolor{colordef}{(+2)}.$$So, a negative divided by a negative gives a positive.