\( \definecolor{colordef}{RGB}{249,49,84} \definecolor{colorprop}{RGB}{18,102,241} \)
Courses
About
Login
Register
C
(
)
⌫
π
e
7
8
9
\(\div\)
\(\sqrt{\,}\)
\(a^{b}\)
4
5
6
\(\times\)
\(\frac{a}{b}\)
ln
1
2
3
-
cos
cos⁻¹
0
.
=
+
sin
sin⁻¹
←
→
!
tan
tan⁻¹
The random variable \(X\) represents the number of customers served by a cashier in an hour, with the probability distribution given below:
\(x\)
0
1
2
3
4
\(P(X = x)\)
0.15
0.2
0.35
0.25
0.05
Calculate the expected value \(E(X)\), the average number of customers served per hour.
\(E(X) = \)
7
8
9
+
4
5
6
-
1
2
3
*
C
0
.
÷
Exit