Let a line pass through point \(A(a_1, a_2, a_3)\) with direction vector \(\Vect{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}\). For any point \(R(x, y, z)\) on the line, the vector equation \(\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}\) leads to parametric equations: $$ \begin{cases} x = a_1 + \lambda b_1 \\
y = a_2 + \lambda b_2 \\
z = a_3 + \lambda b_3 \end{cases}, \quad \lambda \in \mathbb{R} $$In 2 dimensions, the z-components are simply omitted.