| A) Binomial Expansion for \(n\equal 2\) and \(n\equal 3\) | |
|---|---|
| 1) Expanding Perfect Square Binomials (Addition) | Ex 1 Ex 2 Ex 3 Ex 4 |
| 2) Expanding Perfect Square Binomials (Subtraction) | Ex 5 Ex 6 Ex 7 Ex 8 |
| 3) Expanding Perfect Cube Binomials (Addition) | Ex 9 Ex 10 Ex 11 Ex 12 |
| 4) Expanding Perfect Cube Binomials (Subtraction) | Ex 13 Ex 14 Ex 15 Ex 16 |
| B) Pascal's Triangle | |
| 5) Building Pascal's Triangle | Ex 17 Ex 18 |
| 6) Using the Fourth Row of Pascal's Triangle | Ex 19 Ex 20 Ex 21 |
| 7) Using the Fifth Row of Pascal's Triangle | Ex 22 Ex 23 Ex 24 Ex 25 |
| C) The Binomial Theorem | |
| 8) Evaluating Factorials Without a Calculator | Ex 26 Ex 27 Ex 28 Ex 29 |
| 9) Evaluating Factorials with a Calculator | Ex 30 Ex 31 Ex 32 Ex 33 Ex 34 |
| 10) Expressing Products in Factorial Form | Ex 35 Ex 36 Ex 37 Ex 38 Ex 39 Ex 40 |
| 11) Evaluating Factorials by Simplification | Ex 41 Ex 42 Ex 43 Ex 44 |
| 12) Finding a Specific Term in an Expansion | Ex 45 Ex 46 Ex 47 Ex 48 Ex 49 |
| 13) Deriving Identities from the Binomial Theorem | Ex 50 Ex 51 |