
Let \(\angle{MON}=\dfrac \pi 3\).
As \(ON=OM=1\), the triangle \(OMN\) is isosceles. So \(\angle{MON}=\angle{MNO}=\dfrac \pi 3\).
Since the sum of the angles in a triangle is \(\pi\), we have \(\angle{OMN}=\dfrac \pi 3\).
So the triangle \(OMN\) is equilateral.
The altitude \(MH\) bisects the base \(ON\).
Thus \(OH=\dfrac{1}{2}\).$$\begin{aligned} OH^2+HM^2 &=OM^2 \quad \text { (Pythagorean theorem for the right triangle } OHM)\\
\left(\frac{1}{2}\right)^2 + HM^2 &=1 \\
HM^2 &=\frac{3}{4} \\
HM &=\frac{\sqrt{3}}{2} \quad \text { since } HM\geqslant 0\end{aligned}$$As \(\cos \theta\) is the \(x\)-coordinate of \(M\) and \(\sin \theta\) is the \(y\)-coordinate of \(M\):$$\cos \frac{\pi}{3}=\frac{1}{2} \quad \text { and } \quad \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$$