Notation | Meaning | Venn Diagram |
\(A\) | Set \(A\) | ![]() |
\(A'\) | Complement of \(A\) (everything in \(U\) not in \(A\)) | ![]() |
\(A \subseteq B\) | \(A\) is a subset of \(B\) | ![]() |
\(A \cup B\) | Union of \(A\) and \(B\) (all elements in \(A\) or \(B\)) | ![]() |
\(A \cap B\) | Intersection of \(A\) and \(B\) (elements in both) | ![]() |
\(A \cap B = \{\}\) | \(A\) and \(B\) are disjoint (no common elements) | ![]() |
Interval Notation | Set-builder notation | Number line representation |
\(\CloseBracketLeft a, b \CloseBracketRight\) | \(\{x \in \R \mid a \leqslant x \leqslant b\}\) | ![]() |
\(\CloseBracketLeft a, b \OpenBracketRight\) | \(\{x \in \R \mid a \leqslant x < b\}\) | ![]() |
\(\OpenBracketLeft a, b \CloseBracketRight\) | \(\{x \in \R \mid a < x \leqslant b\}\) | ![]() |
\(\OpenBracketLeft a, b \OpenBracketRight\) | \(\{x \in \R \mid a < x < b\}\) | ![]() |
\(\CloseBracketLeft a, +\infty\OpenBracketRight \) | \(\{x \in \R \mid a \leqslant x\}\) | ![]() |
\(\OpenBracketLeft a, +\infty \OpenBracketRight \) | \(\{x \in \R \mid a < x\}\) | ![]() |
\(\OpenBracketLeft -\infty, a\CloseBracketRight\) | \(\{x \in \R \mid x \leqslant a\}\) | ![]() |
\(\OpenBracketLeft -\infty, a\OpenBracketRight\) | \(\{x \in \R \mid x < a\}\) | ![]() |