\( \definecolor{colordef}{RGB}{249,49,84} \definecolor{colorprop}{RGB}{18,102,241} \)
For the function \(f(x)=e^x\),
  1. Find \(f^{(1)}(x)\), \(f^{(2)}(x)\), and \(f^{(3)}(x)\).
  2. Find \(f(0)\), \(f'(0)\), \(f^{(2)}(0)\), and \(f^{(3)}(0)\).
  3. Show that the Maclaurin series for \(e^x\) is$$ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{k=0}^\infty \frac{x^k}{k!} $$

Capture an image of your work. AI teacher feedback takes approximately 10 seconds.