\( \definecolor{colordef}{RGB}{249,49,84} \definecolor{colorprop}{RGB}{18,102,241} \)

Simplifying Powers of Products

Exponent Law 4


Let's look at an example:$$\begin{aligned}(\textcolor{colordef}{3} \times \textcolor{colorprop}{5})^{\textcolor{olive}{2}}&= (\textcolor{colordef}{3} \times \textcolor{colorprop}{5}) \times (\textcolor{colordef}{3} \times \textcolor{colorprop}{5}) \\ &= \textcolor{colordef}{3} \times \textcolor{colorprop}{5} \times \textcolor{colordef}{3} \times \textcolor{colorprop}{5} \\ &= (\textcolor{colordef}{3} \times \textcolor{colordef}{3}) \times (\textcolor{colorprop}{5} \times \textcolor{colorprop}{5}) \\ &= \textcolor{colordef}{3}^{\textcolor{olive}{2}}\, \textcolor{colorprop}{5}^{\textcolor{olive}{2}}\end{aligned}$$In general, when you multiply two numbers \(\textcolor{colordef}{a}\) and \(\textcolor{colorprop}{b}\), and then raise the product to the power \(\textcolor{olive}{n}\), that is$$(\textcolor{colordef}{a}\textcolor{colorprop}{b})^{\textcolor{olive}{n}},$$the result is each factor raised to the power \(\textcolor{olive}{n}\):$$(\textcolor{colordef}{a}\textcolor{colorprop}{b})^{\textcolor{olive}{n}} = \textcolor{colordef}{a}^{\textcolor{olive}{n}}\, \textcolor{colorprop}{b}^{\textcolor{olive}{n}}.$$

Proposition Exponent Law 4
For any numbers \(n\) and any numbers \(a\) and \(b\),$$\left(\textcolor{colordef}{a}\textcolor{colorprop}{b}\right)^{\textcolor{olive}{n}} = \textcolor{colordef}{a}^{\textcolor{olive}{n}}\, \textcolor{colorprop}{b}^{\textcolor{olive}{n}}$$
Example
Simplify \((\textcolor{colordef}{2}\times \textcolor{colorprop}{5})^{\textcolor{olive}{3}}\).

$$(\textcolor{colordef}{2}\times \textcolor{colorprop}{5})^{\textcolor{olive}{3}}= \textcolor{colordef}{2}^{\textcolor{olive}{3}}\, \textcolor{colorprop}{5}^{\textcolor{olive}{3}}$$

Exponent Law 4

Exercise
Simplify:
\((2\times x)^{3} =\)

$$\begin{aligned}(\textcolor{colordef}{2}\times \textcolor{colorprop}{x})^{\textcolor{olive}{3}}&= (\textcolor{colordef}{2}\times \textcolor{colorprop}{x}) \times (\textcolor{colordef}{2}\times \textcolor{colorprop}{x}) \times (\textcolor{colordef}{2}\times \textcolor{colorprop}{x}) \\ &= (\textcolor{colordef}{2} \times \textcolor{colordef}{2} \times \textcolor{colordef}{2}) \times (\textcolor{colorprop}{x} \times \textcolor{colorprop}{x} \times \textcolor{colorprop}{x}) \\ &= \textcolor{colordef}{2}^{\textcolor{olive}{3}} \times \textcolor{colorprop}{x}^{\textcolor{olive}{3}} \\ \end{aligned}$$

Exercise
Simplify:
\((x\times 3)^{2} =\)

$$\begin{aligned}(\textcolor{colordef}{x}\times \textcolor{colorprop}{3})^{\textcolor{olive}{2}}&= (\textcolor{colordef}{x}\times \textcolor{colorprop}{3}) \times (\textcolor{colordef}{x}\times \textcolor{colorprop}{3}) \\ &= (\textcolor{colordef}{x} \times \textcolor{colordef}{x}) \times (\textcolor{colorprop}{3} \times \textcolor{colorprop}{3}) \\ &= \textcolor{colordef}{x}^{\textcolor{olive}{2}} \times \textcolor{colorprop}{3}^{\textcolor{olive}{2}} \\ \end{aligned}$$

Exercise
Simplify:
\((5\times x)^{4} =\)

$$\begin{aligned}(\textcolor{colordef}{5}\times \textcolor{colorprop}{x})^{\textcolor{olive}{4}}&= (\textcolor{colordef}{5}\times \textcolor{colorprop}{x}) \times (\textcolor{colordef}{5}\times \textcolor{colorprop}{x}) \times (\textcolor{colordef}{5}\times \textcolor{colorprop}{x}) \times (\textcolor{colordef}{5}\times \textcolor{colorprop}{x}) \\ &= (\textcolor{colordef}{5} \times \textcolor{colordef}{5} \times \textcolor{colordef}{5} \times \textcolor{colordef}{5}) \times (\textcolor{colorprop}{x} \times \textcolor{colorprop}{x} \times \textcolor{colorprop}{x} \times \textcolor{colorprop}{x}) \\ &= \textcolor{colordef}{5}^{\textcolor{olive}{4}} \times \textcolor{colorprop}{x}^{\textcolor{olive}{4}} \\ \end{aligned}$$

Exercise
Simplify:
\((x\times 2)^{5} =\)

$$\begin{aligned}(\textcolor{colordef}{x}\times \textcolor{colorprop}{2})^{\textcolor{olive}{5}}&= (\textcolor{colordef}{x}\times \textcolor{colorprop}{2}) \times (\textcolor{colordef}{x}\times \textcolor{colorprop}{2}) \times (\textcolor{colordef}{x}\times \textcolor{colorprop}{2}) \times (\textcolor{colordef}{x}\times \textcolor{colorprop}{2}) \times (\textcolor{colordef}{x}\times \textcolor{colorprop}{2}) \\ &= (\textcolor{colordef}{x} \times \textcolor{colordef}{x} \times \textcolor{colordef}{x} \times \textcolor{colordef}{x} \times \textcolor{colordef}{x}) \times (\textcolor{colorprop}{2} \times \textcolor{colorprop}{2} \times \textcolor{colorprop}{2} \times \textcolor{colorprop}{2} \times \textcolor{colorprop}{2}) \\ &= \textcolor{colordef}{x}^{\textcolor{olive}{5}} \times \textcolor{colorprop}{2}^{\textcolor{olive}{5}} \\ \end{aligned}$$