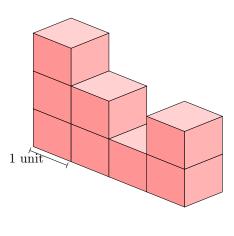
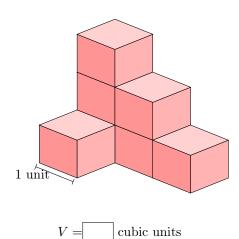
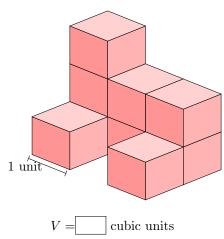

A DEFINITION


A.1 FINDING VOLUME OF A SHAPE

Ex 1: What is the volume of the red solid?

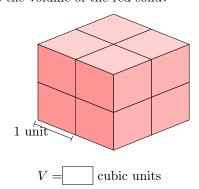

V = cubic units

Ex 2: What is the volume of the red solid?

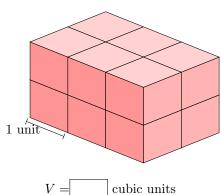


V = cubic units

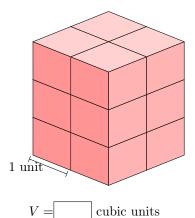
Ex 3: What is the volume of the red solid?



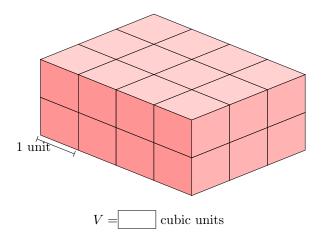
Ex 4: What is the volume of the red solid?


_

Ex 5: What is the volume of the red solid?



A.2 FINDING VOLUME OF A RECTANGULAR CUBOID


Ex 6: What is the volume of the red solid?

Ex 7: What is the volume of the red solid?

Ex 8: What is the volume of the red solid?

B UNITS OF VOLUME

B.1 CHOOSING UNITS FOR VOLUME

MCQ 9: What unit will be used to measure the volume of your bedroom?

Choose 1 answer:

- ☐ Cubic millimeters
- ☐ Cubic centimeters
- ☐ Cubic meters

MCQ 10: What unit will be used to measure the volume of a small toy block?

Choose 1 answer:

- ☐ Cubic millimeters
- ☐ Cubic centimeters
- \square Cubic meters

MCQ 11: What unit will be used to measure the volume of a grain of rice?

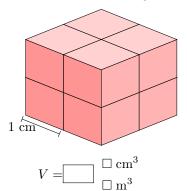
Choose 1 answer:

- ☐ Cubic millimeters
- ☐ Cubic centimeters
- ☐ Cubic meters

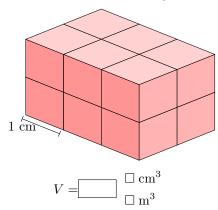
MCQ 12: What unit will be used to measure the volume of a bottle of milk?

Choose 1 answer:

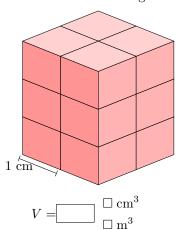
- ☐ Cubic millimeters
- ☐ Cubic centimeters
- ☐ Cubic meters

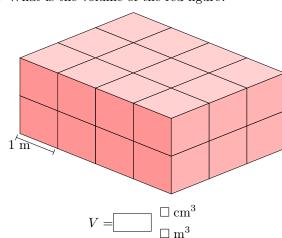

MCQ 13: What unit will be used to measure the volume of a swimming pool?

Choose 1 answer:

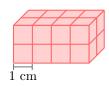

- ☐ Cubic millimeters
- ☐ Cubic centimeters
- ☐ Cubic meters

B.2 FINDING VOLUME OF A RECTANGULAR CUBOID

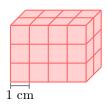

Ex 14: What is the volume of the red figure?


Ex 15: What is the volume of the red figure?

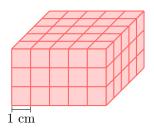
Ex 16: What is the volume of the red figure?


Ex 17: What is the volume of the red figure?

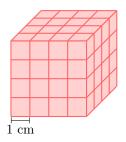
C VOLUME OF A RECTANGULAR CUBOID


C.1 FINDING VOLUMES OF A RECTANGULAR CUBOIDS

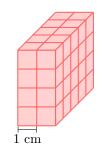
Ex 18: What is the volume of the red figure?


 $V = \boxed{ }$ cm²

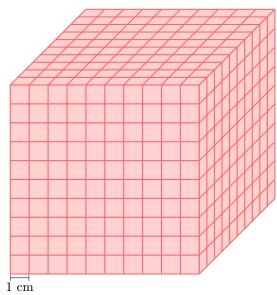
Ex 19: What is the volume of the red figure?


 $V = \boxed{ cm^3}$

Ex 20: What is the volume of the red figure?


$$V = \boxed{ cm^{\epsilon}}$$

Ex 21: What is the volume of the red figure?


$$V =$$
 cm²

Ex 22: What is the volume of the red figure?

$$V = \boxed{\qquad} \text{cm}^3$$

Ex 23: What is the volume of the red figure?

$$V = \boxed{ cm^8}$$

C.2 SOLVING PROBLEMS

Ex 24: A rectangular swimming pool is 8 m long, 5 m wide, and 2 m deep. The water costs 10 dollars per cubic meter. What is the volume of the swimming pool?

$$V =$$
 m²

What is the cost to fill the swimming pool with water?

dollars

Ex 25: A container has a volume of $20 \,\mathrm{m}^3$. A box is $2 \,\mathrm{m}$ long, $1 \,\mathrm{m}$ wide, and $0.5 \,\mathrm{m}$ high.

What is the volume of the box?

 $V = \boxed{\qquad} m^3$

How many boxes can fit inside the container?

boxes

Ex 26: A storage room has a volume of 150 m³. A water tank is 5 m long, 2 m wide, and 3 m high.

What is the volume of the water tank?

V	=	m^3
v	_	111

How many water tanks can fit inside the storage room?

water tanks

Ex 27: A rectangular fish tank is 2 m long, 1 m wide, and 1 m deep. The water costs 15 dollars per cubic meter. What is the volume of the fish tank?

What is the cost to fill the fish tank with water?

dollars

D CONVERSION OF VOLUME UNITS

D.1 CONVERTING VOLUME UNITS

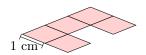
Ex 28: Convert:

 $3 \,\mathrm{cm}^3 = \boxed{\mathrm{mm}^3}$.

Ex 29: Convert:

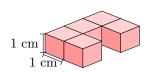
 $12\,000\,\mathrm{mm^3} = \boxed{\mathrm{cm^3}}.$

Ex 30: Convert:

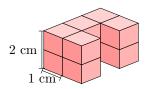

Ex 31: Convert:

E VOLUMES OF SOLIDS WITH UNIFORM CROSS-SECTION

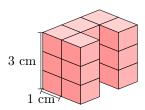
E.1 CALCULATING VOLUMES STEP-BY-STEP


Ex 32:

1. Calculate the area of this figure :


Area of base = | cm²

2. Calculate the volume of this solid:

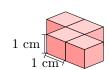


Volume = cm^3

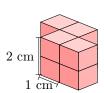
3. Calculate the volume of this solid:

4. Calculate the volume of this solid:

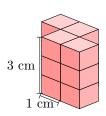
 $Volume = cm^3$


Ex 33:

1. Calculate the area of this figure:

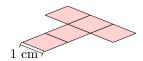

Area of base = $\boxed{ cm^2 }$

2. Calculate the volume of this solid:

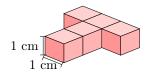

 $Volume = \boxed{} cm^3$

3. Calculate the volume of this solid:

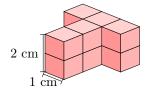
 $Volume = cm^3$


4. Calculate the volume of this solid:

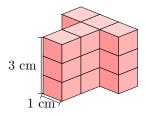
Volume = $| \text{cm}^3 |$


Ex 34:

1. Calculate the area of this figure:

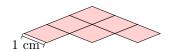

Area of base = $\boxed{\text{cm}^2}$

2. Calculate the volume of this solid:

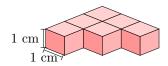

Volume = cm^3

3. Calculate the volume of this solid:

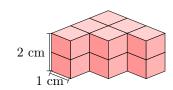
Volume = cm^3


4. Calculate the volume of this solid:

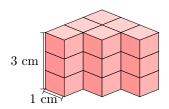
Volume = cm^3


Ex 35:

1. Calculate the area of this figure:

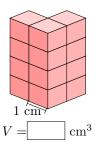

Area of base = cm^2

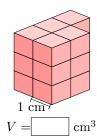
2. Calculate the volume of this solid:


 $\mathrm{Volume} = \boxed{} \mathrm{cm}^3$

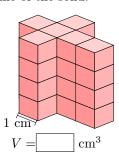
3. Calculate the volume of this solid:

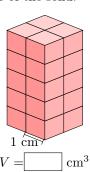
Volume =	Volume =
----------	----------

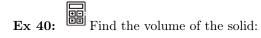

4. Calculate the volume of this solid:

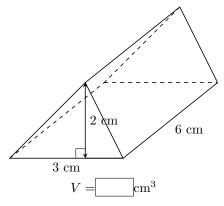

Volume = cm^2

E.2 CALCULATING VOLUMES OF SOLIDS MADE OF CUBES

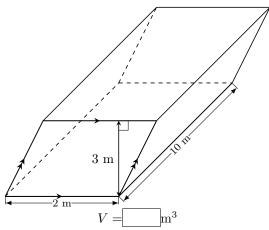

Ex 36: Find the volume of the solid:


Ex 37: Find the volume of the solid:

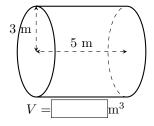

Ex 38: Find the volume of the solid:

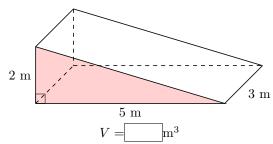


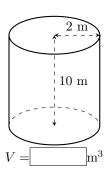
Ex 39: Find the volume of the solid:

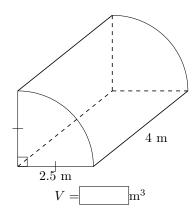


E.3 FINDING VOLUMES OF SOLIDS WITH UNIFORM CROSS-SECTION

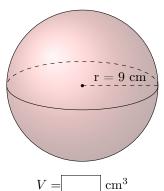


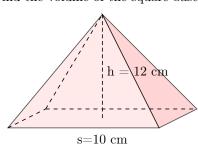

Ex 41: Find the volume of the solid:


Ex 42: Find the volume of the solid (round to 1 decimal place):

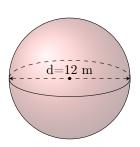

Ex 43: Find the volume of the solid:

Ex 44: Find the volume of the solid (round to 1 decimal place):


Ex 45: Find the volume of the solid (round to 1 decimal place):


F VOLUMES OF TAPERED SOLIDS AND SPHERES

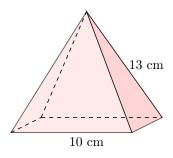
F.1 CALCULATING VOLUMES OF TAPERED SOLIDS AND SPHERES: LEVEL 1

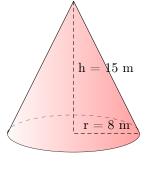

Ex 46: Find the volume of the sphere. (Leave your answer in terms of π)

Ex 47: Find the volume of the square-based pyramid.

Ex 48: Find the volume of the sphere. (Round to two decimal places)

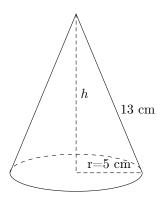
 $V \approx \boxed{ m^3}$

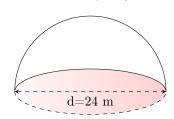

Ex 49:


10 cm and a slant height (the height of each 13 cm. Calculate the volume of the pyramid.

Ex 51:

A square-based pyramid has a base side length of 10 cm and a slant height (the height of each triangular face) of 13 cm. Calculate the volume of the pyramid.




 $V \approx \boxed{\qquad \qquad} \mathrm{m}^3$

F.2 CALCULATING VOLUMES OF TAPERED SOLIDS AND SPHERES: LEVEL 2

Ex 50: Find the volume of a cone with a slant height of 13 cm and a radius of 5 cm. (Leave your answer in terms of π)

Ex 52: Find the volume of the hemisphere with a diameter of 24 m. (Round to one decimal place)

	MCQ 55: What unit best measures the capacity of a dosage of medicine?
	Choose 1 answer:
	□ 5 mL
	□ 0.5 L
	□ 5 L
	MCQ 56: What unit best measures the capacity of a wine glass?
	Choose 1 answer:
	□ 150 L
	□ 15 cL
	□ 1.5 L
	MCQ 57: What unit best measures the capacity of a soup
	bowl? Choose 1 answer:
Ex 53: Find the volume of the composite solid, which consists of a cylinder and a hemisphere. (Round to one decimal	\square 40 cL
place)	\square 40 mL
	□ 40 L
	MCQ 58: What unit best measures the capacity of a car's fuel tank?
Cylinder height $= 8 \text{ cm}$	Choose 1 answer:
	\square 60 mL
Diameter = 6 cm	□ 60 L
	□ 600 L
	MCQ 59: What unit best measures the capacity of a pitcher? Choose 1 answer:
	□ 2.5 mL
	□ 2.5 L
	□ 25 L
	G.2 CONVERTING CAPACITY UNITS
	Ex 60: Convert:
	3 L = cL .
	Ex 61: Convert:
	$1.5\mathrm{L} = $ cL.
	Ex 62: Convert:
	$20\mathrm{cL} =$ L.
G CAPACITY	Ex 63: Convert:
G.1 CHOOSING UNITS FOR CAPACITY	$250 \mathrm{cL} = $ L.
MCQ 54: What unit best measures the capacity of a bathtub? Choose 1 answer:	Ex 64: Convert: $2L = \boxed{\qquad} mL.$
□ 220 mL	Ex 65: Convert:
\square 2 200 mL	Ex 65: Convert: $30 \mathrm{mL} = \boxed{} \mathrm{cL}.$
□ 220 L	$50\mathrm{mL} = $ CL.
www.commeunjeu.com 8	O_{ullet}°

G.3 CONVERTING BETWEEN METRIC VOLUME AND CAPACITY UNITS

Ex 66: Convert:

 $5 \,\mathrm{m}^3 = \boxed{} \mathrm{L}.$

Ex 67: Convert:

 $500 L = \boxed{} m^3.$

Ex 68: Convert:

 $3.4 \,\mathrm{m}^3 =$ L.

Ex 69: Convert:

 $2L = \boxed{m^3}$

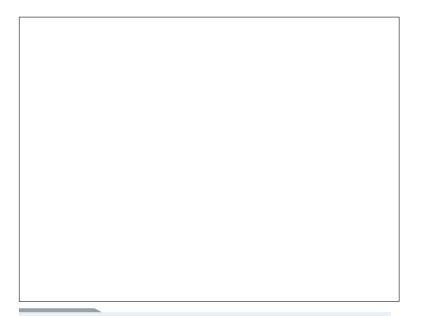
H DENSITY

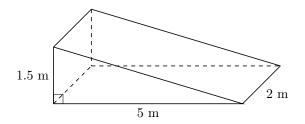
H.1 SOLVING PROBLEMS INVOLVING DENSITY

Ex 70:

A solid gold bar is a rectangular prism with dimensions 5 cm by 10 cm by 2 cm. The density of gold is 19.3 g/cm³. What is the mass of the gold bar in kilograms?

Ex 71: A block of ice in the shape of a cube has a side length of 50 cm. Its mass is measured to be 114.5 kg. What is the density of the ice in g/cm^3 ?

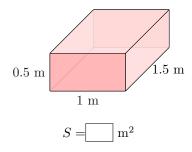

decimal place)


Ex 72: A scientist has a 5.4 kg sample of aluminum. The

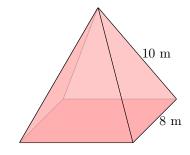
density of aluminum is 2700 kg/m³. If the sample is a cylinder with a radius of 5 cm, what is its height in cm? (Round to one

Ex 73: A solid sphere made of lead has a mass of 380 g. If the density of lead is 11.34 g/cm^3 , what is the radius of the sphere? (Round to one decimal place)

Ex 74: A cone has a radius of 10 cm, a height of 30 cm, and a mass of 7.85 kg. Calculate its density in g/cm³. Based on your result, is the material more likely to be glass ($\rho \approx 2.5$ g/cm³) or aluminum ($\rho = 2.7$ g/cm³)?

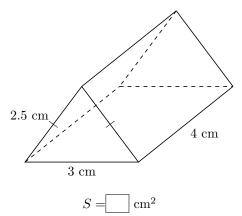


 $S = \boxed{ \qquad } m^2 \text{ (round to 1 decimal place)}$


I SURFACE AREA

I.1 FINDING SURFACE AREAS

Ex 75: Find the surface area of the rectangular cuboid.



Ex 76: Find the surface area of the square-based pyramid.

 $S \approx \mod m^2$ (round to the nearest integer)

Ex 77: Find the surface area of the triangular prism.

Ex 78: Find the surface area of the triangular prism.