VECTOR PRODUCT

A DEFINITION

A.1 CALCULATING THE VECTOR PRODUCT

Ex 1: For
$$\overrightarrow{a} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$
 and $\overrightarrow{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, calculate:

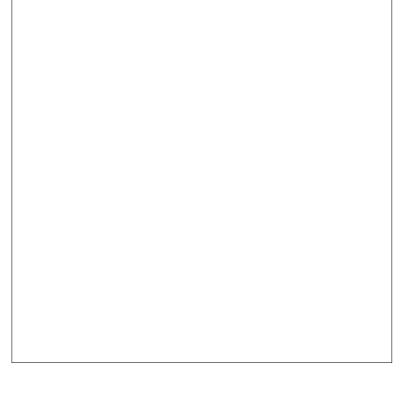
$$\overrightarrow{a} \times \overrightarrow{b} = \left(\begin{array}{c} \square \\ \square \end{array} \right)$$

Ex 2: For
$$\overrightarrow{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 and $\overrightarrow{c} = \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix}$, calculate:

$$\overrightarrow{b} \times \overrightarrow{c} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

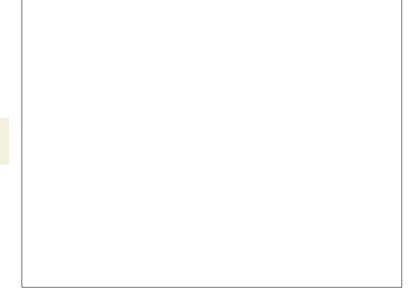
Ex 3: For
$$\overrightarrow{c} = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$$
 and $\overrightarrow{d} = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$, calculate:

$$\overrightarrow{c} \times \overrightarrow{d} = \left(\begin{array}{c} \\ \\ \\ \end{array}\right)$$


Ex 4: For
$$\overrightarrow{u} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$$
 and $\overrightarrow{v} = \begin{pmatrix} 3 \\ 1 \\ -4 \end{pmatrix}$, calculate:

$$\overrightarrow{u} \times \overrightarrow{v} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

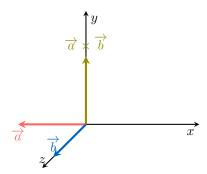
A.2 VERIFYING PROPERTIES OF THE VECTOR PRODUCT


Ex 5: Suppose
$$\overrightarrow{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 and $\overrightarrow{b} = \begin{pmatrix} -1 \\ 3 \\ -1 \end{pmatrix}$.

- 1. Find $\overrightarrow{a} \times \overrightarrow{b}$.
- 2. Hence determine $\overrightarrow{a} \cdot (\overrightarrow{a} \times \overrightarrow{b})$ and $\overrightarrow{b} \cdot (\overrightarrow{a} \times \overrightarrow{b})$.
- 3. Explain your results.

Ex 6: \overrightarrow{i} , \overrightarrow{j} , and \overrightarrow{k} are the base unit vectors in a 3D orthonormal system.

- 1. Find $\overrightarrow{i} \times \overrightarrow{i}$, $\overrightarrow{j} \times \overrightarrow{j}$, and $\overrightarrow{k} \times \overrightarrow{k}$.
- 2. Find $\overrightarrow{i} \times \overrightarrow{j}$ and $\overrightarrow{j} \times \overrightarrow{i}$.


Ex 7: For
$$\overrightarrow{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
, prove that $\overrightarrow{a} \times \overrightarrow{a} = \overrightarrow{0}$.

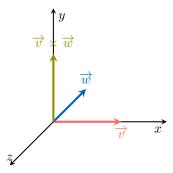
Ex 8: For
$$\overrightarrow{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 and $\overrightarrow{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, prove that $\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}$.

B GEOMETRIC INTERPRETATION

B.1 APPLYING THE RIGHT-HAND RULE

MCQ 10: The diagram below illustrates three vectors, \overrightarrow{a} , \overrightarrow{b} , and their vector product $\overrightarrow{a} \times \overrightarrow{b}$.

According to the right-hand rule, is the direction of the vector product $\overrightarrow{a} \times \overrightarrow{b}$ correctly illustrated?

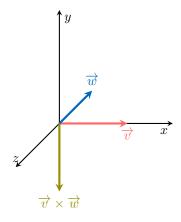

☐ Yes

 \square No

Ex 9: Let $\overrightarrow{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$, $\overrightarrow{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, and $\overrightarrow{c} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$ be three vectors in space. Prove the distributive property of the vector product:

$$\overrightarrow{a}\times(\overrightarrow{b}+\overrightarrow{c})=(\overrightarrow{a}\times\overrightarrow{b})+(\overrightarrow{a}\times\overrightarrow{c})$$

MCQ 11: The diagram below illustrates three vectors, \overrightarrow{v} , \overrightarrow{w} , and their vector product $\overrightarrow{v} \times \overrightarrow{w}$.

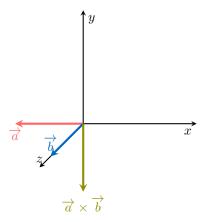


According to the right-hand rule, is the direction of the vector product $\overrightarrow{v} \times \overrightarrow{w}$ correctly illustrated?

 \square Yes

 \square No

MCQ 12: The diagram below illustrates three vectors, \overrightarrow{v} , \overrightarrow{w} , and their vector product $\overrightarrow{v} \times \overrightarrow{w}$.

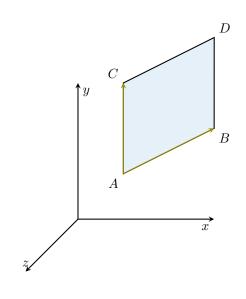


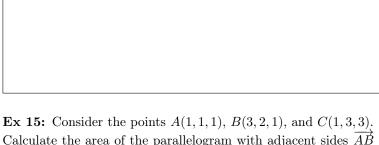
According to the right-hand rule, is the direction of the vector product $\overrightarrow{v} \times \overrightarrow{w}$ correctly illustrated?

☐ Yes

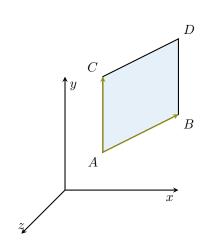
 \square No

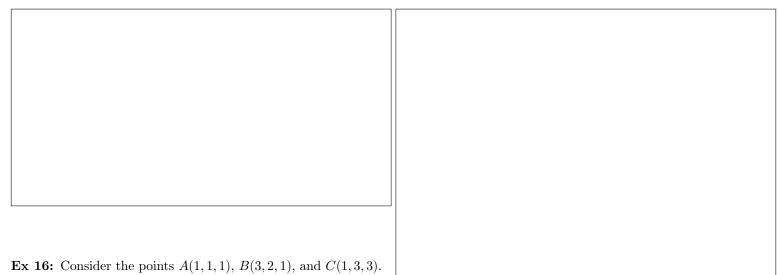
MCQ 13: The diagram below illustrates three vectors, \overrightarrow{d} , \overrightarrow{b} , and their vector product $\overrightarrow{a} \times \overrightarrow{b}$.

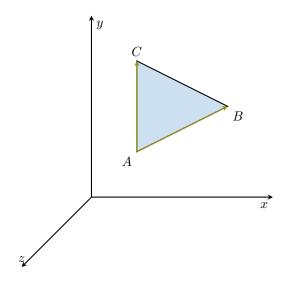

According to the right-hand rule, is the direction of the vector product $\overrightarrow{a} \times \overrightarrow{b}$ correctly illustrated?


☐ Yes

 \square No


CALCULATING AREA USING THE VECTOR **PRODUCT**


Ex 14: Consider the points A(1,1,1), B(3,2,1), and C(1,3,3). Calculate the area of the parallelogram with adjacent sides \overline{AB} and \overline{AC} .



Calculate the area of the parallelogram with adjacent sides \overrightarrow{AB} and \overrightarrow{AC} .

Calculate the area of the triangle ABC.

Ex 17: Consider the points $A(0,0,0),\ B(-1,2,3),$ and C(1,2,6). Calculate the area of the triangle ABC.