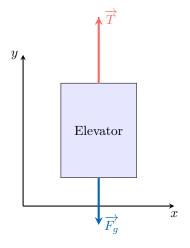
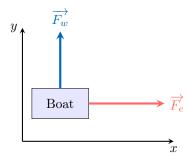

VECTOR APPLICATIONS IN PHYSICS

A NEWTON'S SECOND LAW


A.1 APPLYING NEWTON'S SECOND LAW

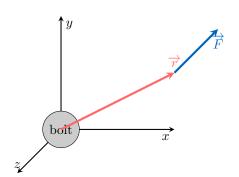
Ex 1: A ball of mass m = 2 kg is thrown into the air. Near the Earth's surface, the only significant force acting on it is the force of gravity, $\overline{F_q}$.

Assuming the y-axis points vertically upwards and the acceleration due to gravity is $g = 9.8 \text{ m/s}^2$, calculate the gravitational force vector $\overrightarrow{F_g}$ and use Newton's Second Law to find the acceleration vector \overrightarrow{a} of the ball.


An elevator of mass m = 500 kg is supported by a cable that exerts an upward tension force \overline{T} with a magnitude of 5900 N. The force of gravity, $\overline{F_g}$, acts downwards. The y-axis is oriented vertically upwards.

Using the acceleration due to gravity $g = 9.8 \text{ m/s}^2$,

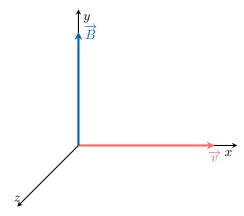
- 1. Calculate the force of gravity, $F_g = mg$, and write the vectors for the tension force, \overrightarrow{T} , and the gravitational force,
- 2. Calculate the net force $\sum \overrightarrow{F}$ on the elevator.
- 3. Determine the acceleration vector \overrightarrow{d} of the elevator.


Ex 3: \mathbb{R}^{3} A boat of mass m = 200 kg is moving on the surface of a lake. The boat's engine exerts a force $\overrightarrow{F_e}$ of 600 N towards the East (positive x-direction). The wind exerts a force $\overline{F_w}$ of 200 N towards the North (positive y-direction). Friction is negligible.

- 1. Write the column vectors for the engine force, $\overrightarrow{F_e}$, and the wind force, F_w .
- 2. Calculate the net force vector $\sum \overrightarrow{F}$ acting on the boat.
- 3. Use Newton's Second Law to find the acceleration vector \overrightarrow{d} of the boat.

	A
	\overline{r}

A force of $\overrightarrow{F} = \begin{pmatrix} 0 \\ 0 \\ -10 \end{pmatrix}$ N is applied to a wrench at a position $\overrightarrow{r} = \begin{pmatrix} 0.2 \\ 0.1 \\ 0 \end{pmatrix}$ m relative to the center of a bolt, as shown.


A.2 APPLYING THE VECTOR PRODUCT IN PHYSICS

Ex 4: The magnetic force \overrightarrow{F} exerted on a particle with electric charge q moving with velocity \overrightarrow{v} through a magnetic field \overrightarrow{B} is given by the Lorentz force formula:

$$\overrightarrow{F} = q(\overrightarrow{v} \times \overrightarrow{B})$$

A particle with charge q=2 C enters a uniform magnetic field

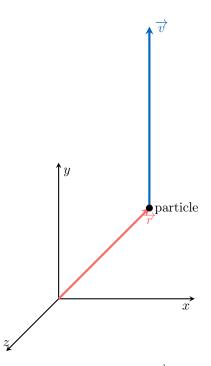
$$\overrightarrow{B} = \begin{pmatrix} 0 \\ 5 \\ 0 \end{pmatrix}$$
 T with a velocity of $\overrightarrow{v} = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}$ m/s, as shown below.

Calculate the torque vector $\overrightarrow{\tau}$ on the bolt. The resulting torque will be in Newton-meters (Nm).

resulting force will be in Newtons (N).

Calculate the magnetic force \overrightarrow{F} acting on the particle. The

Ex 6: The angular momentum \overrightarrow{L} of a particle relative to a point of origin is a measure of its rotational motion. It is defined by the vector product of the particle's position vector \overrightarrow{r} and its linear momentum vector \overrightarrow{p} , where $\overrightarrow{p} = m\overrightarrow{v}$.


$$\overrightarrow{L} = \overrightarrow{r} \times \overrightarrow{p}$$

Ex 5: Torque, or the turning moment of a force, is a measure of how much a force acting on an object causes that object to rotate. The torque vector $\overrightarrow{\tau}$ is calculated using the vector product of the position vector \overrightarrow{r} (from the axis of rotation to the point where the force is applied) and the force vector \overrightarrow{F} .

$$\overrightarrow{\tau} = \overrightarrow{r} \times \overrightarrow{F}$$

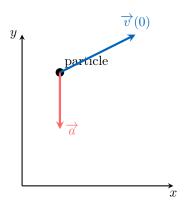
A particle of mass m=3 kg is at position $\overrightarrow{r}=\begin{pmatrix}2\\2\\0\end{pmatrix}$ m and is

moving with a velocity $\overrightarrow{v} = \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix}$ m/s.

Calculate the angular momentum vector \overrightarrow{L} of the particle. The units will be kg·m²/s.

Ex 8: The position vector of a particle at time t seconds is given by:

$$\overrightarrow{r}(t) = \begin{pmatrix} 3t^2 - 4t \\ 8t + 1 \end{pmatrix}$$
 m


1. Find the velocity vector, $\overrightarrow{v}(t)$.

2. Calculate the speed of the particle at time t=2 seconds.

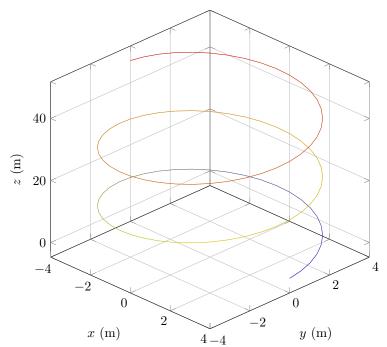
B VELOCITY AND ACCELERATION WITH CALCULUS

B.1 APPLYING CALCULUS TO VECTOR KINEMATICS

Ex 7: A particle of mass m is launched with an initial velocity of $\overrightarrow{v}(0) = \begin{pmatrix} 20 \\ 30 \end{pmatrix}$ m/s. The only force acting on it is gravity, which results in a constant acceleration of $\overrightarrow{a} = \begin{pmatrix} 0 \\ -9.8 \end{pmatrix}$ m/s².

Find the velocity vector $\overrightarrow{v}(t)$ of the particle at time t.

Ex 9: A particle starts from rest at the point (5,1). Its acceleration vector at time t is given by $\overrightarrow{a}(t) = \begin{pmatrix} 3t \\ -2 \end{pmatrix}$ m/s².


1. Find the velocity vector, $\overrightarrow{v}(t)$.

2. Find the position vector, $\overrightarrow{r}(t)$.

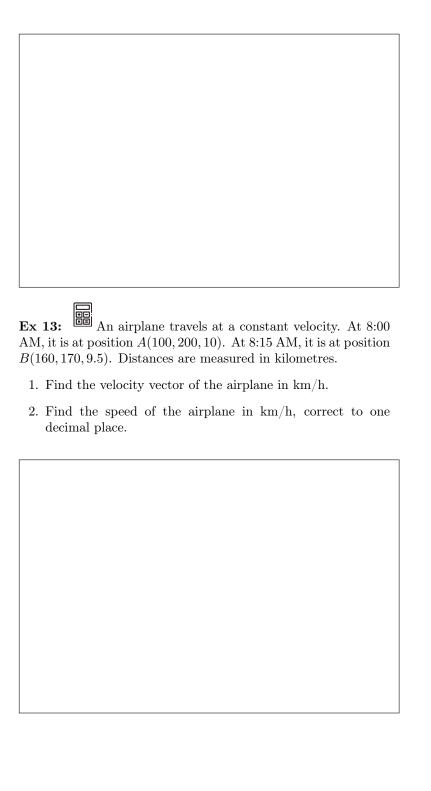
Ex 10: The position vector of a particle at time t seconds is given by:

$$\overrightarrow{r}(t) = \begin{pmatrix} 4\cos(t) \\ 4\sin(t) \\ 3t \end{pmatrix} \text{ m}$$

- 1. Find the velocity vector, $\overrightarrow{v}(t)$.
- 2. Calculate the speed of the particle at any time t.

C MOTION WITH CONSTANT VELOCITY

C.1 CALCULATING VELOCITY AND SPEED FROM DISPLACEMENT


Ex 11: A helicopter travels at a constant velocity. It is initially at position A(6,9,3), and 10 minutes later it is at position B(3,10,2.5). Distances are measured in kilometres.

- 1. Find the velocity vector of the helicopter in km/h.
- 2. Find the speed of the helicopter in km/h, correct to one decimal place.

Ex 12: A car travels at a constant velocity. At 1:00 PM, its position is A(15, 20). At 1:30 PM, its position is B(55, -10). Distances are measured in kilometres.

- 1. Find the velocity vector of the car in km/h.
- 2. Find the speed of the car in km/h.

