TRIGONOMETRY

Trigonometry is a branch of mathematics that studies the relationships between the side lengths and angles of triangles, especially right-angled triangles. It is widely used in science, engineering, astronomy, and even video game development. The foundation of trigonometry lies in three main ratios: sine, cosine, and tangent.

A RIGHT-ANGLED TRIANGLE

Definition Right-Angled Triangle

A right-angled triangle is a triangle with one angle equal to 90°. For a given angle θ (other than the right angle), we define:

- Hypotenuse (HYP): The longest side, opposite the right angle.
- Adjacent Side (ADJ): The side next to the angle θ , which is not the hypotenuse.
- Opposite Side (OPP): The side facing the angle θ .

Ex: In the triangle below, identify the hypotenuse, the adjacent side, and the opposite side relative to angle θ .

Answer:

• Hypotenuse: \overline{BC}

• Adjacent side: \overline{AC}

• Opposite side: \overline{AB}

B TRIGONOMETRIC FUNCTIONS

Discover:

- 1. Using a protractor and ruler, draw right-angled triangles with one angle θ equal to 15°, 30°, 45°, 60°, or 75°. Measure the lengths of the hypotenuse and the adjacent side to the nearest millimeter.
- 2. Complete the following table with the ratio $\frac{\mathrm{ADJ}}{\mathrm{HYP}}$ for each angle:

θ	15°	30°	45°	60°	75°
ADJ					
$\overline{\text{HYP}}$					

Answer:

1. Here are examples of right-angled triangles for the specified angles. In each triangle, the side adjacent to θ (ADJ) and the hypotenuse (HYP) are labeled so you can measure and verify the ratios.

2. The ratio $\frac{ADJ}{HYP}$ for each angle, using a calculator:

θ	15°	30°	45°	60°	75°
$\frac{\text{ADJ}}{\text{HYP}}$	0.97	0.87	0.71	0.50	0.26

Proposition Trigonometric Ratios

For any two right-angled triangles with the same angle θ , the ratios $\frac{\text{OPP}}{\text{HYP}}$, $\frac{\text{ADJ}}{\text{HYP}}$, and $\frac{\text{OPP}}{\text{ADJ}}$ are constant.

Proof

Consider two right-angled triangles with the same angle θ . Since their angles are equal, the triangles are similar. Therefore, the ratios are constant for a given angle.

This means that for any right-angled triangle with the same angle θ , the ratio $\frac{\text{ADJ}}{\text{HYP}}$ is always the same. This is why we define the **cosine** function, denoted cos, such that:

$$\cos(\theta) = \frac{ADJ}{HYP}$$

For example:

θ	15°	30°	45°	60°	75°
$\cos(\theta)$	0.97	0.87	0.71	0.50	0.26

For instance, $\cos(45^{\circ}) \approx 0.71$.

Definition Trigonometric Functions

In a right-angled triangle with angle θ :

$$\sin(\theta) = \frac{\mathrm{OPP}}{\mathrm{HYP}}, \quad \cos(\theta) = \frac{\mathrm{ADJ}}{\mathrm{HYP}}, \quad \tan(\theta) = \frac{\mathrm{OPP}}{\mathrm{ADJ}}$$

2

The mnemonic **SOH-CAH-TOA** helps remember the definitions:

- Sine = Opposite \div Hypotenuse
- Cosine = $Adjacent \div Hypotenuse$
- Tangent = Opposite \div Adjacent

To help you memorize, listen to this song: https://www.youtube.com/watch?v=PIWJo5uK3Fo

Ex: In the triangle below, find $\cos \theta$, $\sin \theta$, and $\tan \theta$.

Answer: Relative to θ :

• Hypotenuse: BC = 5

• Adjacent side: AB = 4

• Opposite side: AC = 3

$$\cos \theta = \frac{\text{ADJ}}{\text{HYP}} = \frac{4}{5}$$
$$\sin \theta = \frac{\text{OPP}}{\text{HYP}} = \frac{3}{5}$$
$$\tan \theta = \frac{\text{OPP}}{\text{ADJ}} = \frac{3}{4}$$

Proposition Tangent Formula

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

Proof

$$\frac{\sin \theta}{\cos \theta} = \frac{\frac{\text{OPP}}{\text{HYP}}}{\frac{\text{ADJ}}{\text{HYP}}} = \frac{\text{OPP}}{\text{HYP}} \times \frac{\text{HYP}}{\text{ADJ}} = \frac{\text{OPP}}{\text{ADJ}} = \tan \theta$$

Method Using Calculator -

Trigonometric ratios for any angle can be calculated using a calculator in degree mode. Make sure your calculator is set to "degrees" before calculating.

Ex: In the triangle below, find x.

Answer:

$$\cos \theta = \frac{\text{ADJ}}{\text{HYP}}$$
$$\cos(30^\circ) = \frac{x}{3}$$
$$x = 3 \times \cos(30^\circ)$$
$$x \approx 3 \times 0.866$$
$$x \approx 2.6 \text{ cm}$$

C INVERSE TRIGONOMETRIC FUNCTIONS

Trigonometric ratios can be used to find unknown angles in right-angled triangles when at least two side lengths are known.

Definition Inverse Trigonometric Functions

In a right-angled triangle with an angle θ :

$$\theta = \cos^{-1}\left(\frac{\text{ADJ}}{\text{HYP}}\right), \quad \theta = \sin^{-1}\left(\frac{\text{OPP}}{\text{HYP}}\right), \quad \theta = \tan^{-1}\left(\frac{\text{OPP}}{\text{ADJ}}\right)$$

Ex: In the triangle below, find the angle θ .

Answer: We know the lengths of the adjacent side (AB = 0.5) and the hypotenuse (BC = 1) relative to θ . We can use the inverse cosine function:

$$\theta = \cos^{-1}\left(\frac{\text{ADJ}}{\text{HYP}}\right)$$
$$= \cos^{-1}\left(\frac{0.5}{1}\right)$$
$$= 60^{\circ}$$

D SOLVING REAL-WORLD TRIGONOMETRY PROBLEMS

Trigonometric ratios are powerful tools for solving a wide range of problems involving right-angled triangles, especially in real-world contexts. To solve these problems effectively, follow the structured steps below:

Method Solving Real-World Trigonometry Problems

- Draw a clear diagram representing the situation described in the problem.
- Label the unknown (side or angle) you need to find. Use x for a side and θ for an angle if possible.
- Identify a right-angled triangle within your diagram.
- Write an equation relating an angle and two sides of the triangle using the appropriate trigonometric ratio.
- Solve the equation to find the unknown value.
- State your answer clearly, including appropriate units, in a complete sentence.