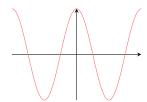
TRIGONOMETRIC FUNCTIONS

A PERIODIC FUNCTION

A.1 IDENTIFYING PERIODIC BEHAVIOUR FROM A GRAPH

MCQ 1: Is the function shown in the graph below periodic?

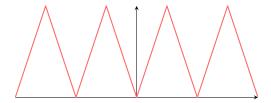


⊠ Yes

 \square No

Answer: Yes, this function is periodic. The graph shows a simple wave pattern that repeats. We can see that the shape of the graph from x=0 to $x=\pi$ is identical to the shape from $x=\pi$ to $x=2\pi$ (and so on). Therefore, the function **is periodic**.

MCQ 2: Is the function shown in the graph below periodic?

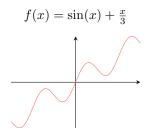


⊠ Yes

 \square No

Answer: Yes, this function is periodic. The graph shows a triangular "zig-zag" pattern that repeats itself exactly. One full cycle of the pattern occurs over a horizontal distance of 4 units (for example, from the minimum at x=0 to the next minimum at x=4). Therefore, the function **is periodic**.

MCQ 3: Is the function shown in the graph below periodic?

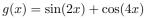


 \square Yes

⊠ No

Answer: A function is periodic if its graph shows a pattern that repeats itself exactly. Although this graph has a wave-like shape, it is constantly drifting upwards. The function never returns to its previous y-values, so the pattern does not repeat. Therefore, the function is **not periodic**.

MCQ 4: Is the function shown in the graph below periodic?

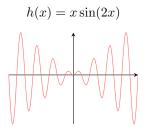


⊠ Yes

□ No

Answer: Yes, this function is periodic. Although the wave shape is complex, we can observe a distinct pattern that repeats itself exactly over a regular horizontal interval. For example, the shape of the graph between x=0 and $x=2\pi$ is identical to the shape between $x=2\pi$ and $x=4\pi$. Therefore, the function **is periodic**.

MCQ 5: Is the function shown in the graph below periodic?



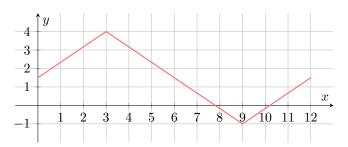
☐ Yes

⊠ No

Answer: This function is not periodic. Although it oscillates, the amplitude of the oscillations (the maximum height of the waves) is continuously increasing as |x| increases. For a function to be periodic, its pattern, including its maximum and minimum values, must repeat exactly. Since the amplitude is not constant, the function is **not periodic**.

A.2 IDENTIFYING PROPERTIES OF PERIODIC FUNCTIONS

Ex 6: For the periodic function shown below, find:



1. The period is $\boxed{6}$

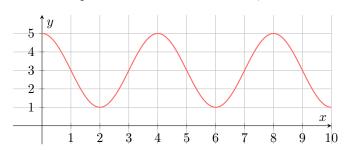
2. The equation of the principal axis is y = 1.5

3. The amplitude is $\boxed{2.5}$

Answer:

- 1. **Period**: The graph completes one full cycle from the minimum at x=9 to the next point where it would start repeating the downward slope, which appears to be after two peaks. Let's look at the pattern from x=0 to x=6. The pattern from x=6 to x=12 is identical. Therefore, the period is 6.
- 2. **Principal Axis**: The maximum value is 4 and the minimum value is -1. The principal axis is the line $y = \frac{4+(-1)}{2} = \frac{3}{2} = 1.5$.
- 3. **Amplitude**: The amplitude is the distance from the principal axis (y=1.5) to a maximum (y=4). The amplitude is 4-1.5=2.5. (Alternatively, $\frac{4-(-1)}{2}=\frac{5}{2}=2.5$).

Ex 7: For the periodic function shown below, find:

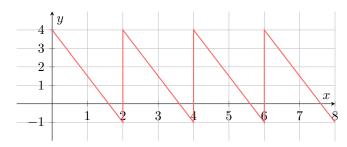


- 1. The period is 4
- 2. The equation of the principal axis is y = 3
- 3. The amplitude is $\boxed{2}$

Answer:

- 1. **Period**: The graph completes one full cycle from the peak at x = 0 to the next peak at x = 4. The period is 4 0 = 4.
- 2. **Principal Axis**: The maximum value is 5 and the minimum value is 1. The principal axis is the line $y = \frac{5+1}{2} = 3$.
- 3. **Amplitude**: The amplitude is the distance from the principal axis (y=3) to a maximum (y=5). The amplitude is 5-3=2. (Alternatively, $\frac{5-1}{2}=2$).

Ex 8: For the periodic function shown below, find:



- 1. The period is $\boxed{2}$
- 2. The equation of the principal axis is y = 1.5
- 3. The amplitude is $\boxed{2.5}$
- Answer:

- 1. **Period**: The graph shows a repeating "sawtooth" pattern. One full cycle of this pattern occurs from x=0 to x=2, then repeats from x=2 to x=4, and so on. The period is 2.
- 2. **Principal Axis**: The maximum value is 4 and the minimum value is -1. The principal axis is the line $y = \frac{4+(-1)}{2} = \frac{3}{2} = 1.5$.
- 3. **Amplitude**: The amplitude is the distance from the principal axis (y = 1.5) to a maximum (y = 4). The amplitude is 4 1.5 = 2.5. (Alternatively, $\frac{4 (-1)}{2} = 2.5$).

B SINE AND COSINE FUNCTION

B.1 COMPLETING TABLES OF VALUES

Ex 9: For $f(x) = \sin(x)$, complete the table of values for the multiples of $\frac{\pi}{8}$ (rounded to 2 decimal places):

x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3\pi}{8}$	$\frac{\pi}{2}$	
$\sin(x)$	0	0.38	0.71	0.92	1	

Answer: To calculate these values on your calculator, for each angle:

- If you are in degree mode, first convert the angle to degrees: for example, $\frac{\pi}{4} \times \frac{180^{\circ}}{\pi} = 45^{\circ}$, then $\sin(45^{\circ}) \approx 0.71$.
- If your calculator is set to radians, you can directly compute $\sin\left(\frac{\pi}{4}\right) \approx 0.71$.

x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3\pi}{8}$	$\frac{\pi}{2}$
$\sin(x)$	0	0.38	0.71	0.92	1

Ex 10: Complete the table of values for the multiples of $\frac{\pi}{6}$ (rounded to 2 decimal places):

	x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$
Ì	$\cos(x)$	1	0.87	0.5	0	-0.5	-0.87

Answer: To calculate these values on your calculator:

- If you are in degree mode, convert the angle to degrees: e.g., $\frac{\pi}{6} \times \frac{180^{\circ}}{\pi} = 30^{\circ}$, then $\cos(30^{\circ}) \approx 0.87$.
- If your calculator is in radian mode, you can directly compute $\cos\left(\frac{\pi}{6}\right) \approx 0.87$.

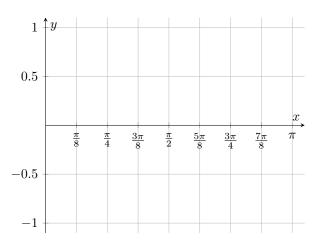
			π	π	π	$ 2\pi $	5π
	x	U	<u>-</u>	3	$\frac{1}{2}$	3	6
ł	()	-1	0.07	0 -	-	0.5	0.07
	$\cos(x)$	1	0.87	0.5	U	-0.5	-0.87

B.2 PLOTTING GRAPHS

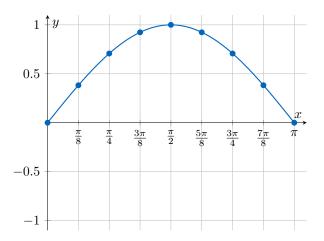
Ex 11: Here is a table of values for the function $f(x) = \sin(x)$:

x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3\pi}{8}$	$\frac{\pi}{2}$	$\frac{5\pi}{8}$	$\frac{3\pi}{4}$	$\frac{7\pi}{8}$	π
$\sin(x)$	0	0.38	0.71	0.92	1.00	0.92	0.71	0.38	0

Plot the graph of the function.



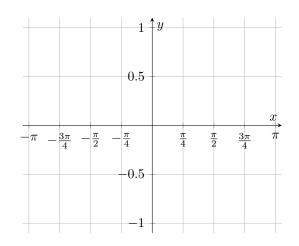
Answer:

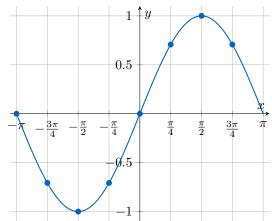


Ex 12: Here is a table of values for the function $f(x) = \sin(x)$:

x	$-\pi$	$-\frac{3\pi}{4}$	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$
$\sin(x)$	0	-0.71	-1.00	-0.71	0	0.71	1	0.71

Plot the graph of the function on the interval $[-\pi; \pi]$:



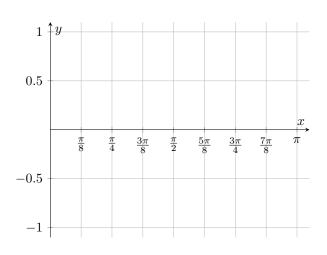


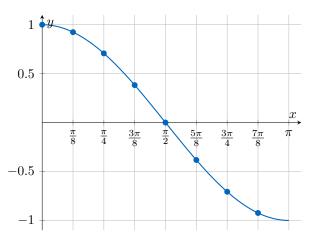
Answer:

Ex 13: Here is a table of values for the function $f(x) = \cos(x)$:

x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3\pi}{8}$	$\frac{\pi}{2}$	$\frac{5\pi}{8}$	$\frac{3\pi}{4}$	$\frac{7\pi}{8}$
$\cos(x)$	1	0.92	0.71	0.38	0	-0.38	-0.71	-0.92

Plot the graph of the function.



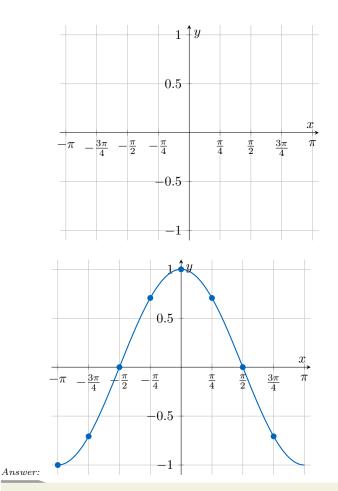


Answer:

Ex 14: Here is a table of values for the function $f(x) = \cos(x)$:

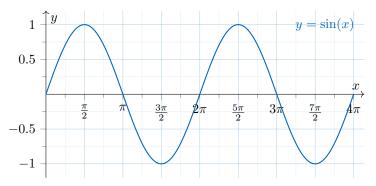
x	$-\pi$	$-\frac{3\pi}{4}$	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$
$\cos(x)$	-1	-0.71	0	0.71	1	0.71	0	-0.71

Plot the graph of the function on the interval $[-\pi; \pi]$:



B.3 READING GRAPHS

Ex 15: Below is the graph of the function $y = \sin(x)$, for $0 \le x \le 4\pi$.



1. Find the *y*-intercept of the graph.

 $(0, \boxed{0})$

2. Use the graph to determine the values of x in the interval $0 \le x \le 4\pi$ such that $\sin(x) = 1$:

$$\left[\frac{\pi}{2}\right], \left[\frac{5\pi}{2}\right]$$

Answer:

1. The y-intercept of the graph is the point where x = 0:

(0,0)

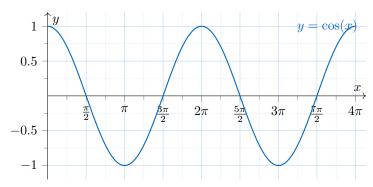
2. We are asked to find all values of x in the interval $0 \le x \le 4\pi$ for which $\sin(x) = 1$.

From the graph, $\sin(x) = 1$ when $x = \frac{\pi}{2}$ and again one

full period later, at $x = \frac{5\pi}{2}$. These are the only two values within the interval $[0, 4\pi]$.

$$x = \frac{\pi}{2}$$
 and $x = \frac{5\pi}{2}$

Ex 16: Below is the graph of the function $y = \cos(x)$, for $0 \le x \le 4\pi$.



1. Find the *y*-intercept of the graph.

(0, 1)

2. Use the graph to determine the values of x in the interval $0 \le x \le 4\pi$ such that $\cos(x) = 0$:

$$\left\lceil \frac{\pi}{2} \right\rceil, \left\lceil \frac{3\pi}{2} \right\rceil, \left\lceil \frac{5\pi}{2} \right\rceil, \left\lceil \frac{7\pi}{2} \right\rceil$$

Answer:

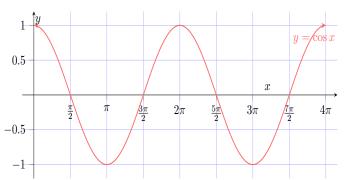
1. The y-intercept of the graph is the point where x = 0:

2. We are asked to find all values of $x \in [0, 4\pi]$ such that $\cos(x) = 0$. From the graph, $\cos(x) = 0$ at:

$$x = \frac{\pi}{2}, \ \frac{3\pi}{2}, \ \frac{5\pi}{2}, \ \frac{7\pi}{2}$$

B.4 READING KEY FEATURES FROM A GRAPH

Ex 17: Below is an accurate graph of the function $y = \cos(x)$, for $0 \le x \le 4\pi$.



1. Find the y-intercept of the graph.

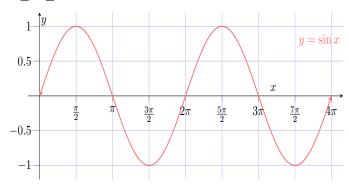
2. Find the values of x on $0 \le x \le 4\pi$ for which:

- (a) $\cos x = 1$
- (b) $\cos x = 0$
- 3. Find the intervals on $0 \le x \le 4\pi$ where $\cos x$ is:
 - (a) non negative.
 - (b) non positive
- 4. Find the range of the function.

Answer:

- 1. The y-intercept is the value of y when x = 0. From the graph, this is 1.
- 2. By reading the x-coordinates from the graph at the required heights:
 - (a) $\cos x = 1$ when $x = 0, 2\pi, 4\pi$.
 - (b) $\cos x = 0$ when $x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}$.
- 3. By observing where the graph is above or below the x-axis:
 - (a) Non negative for $x \in [0, \frac{\pi}{2}] \cup [\frac{3\pi}{2}, \frac{5\pi}{2}] \cup [\frac{7\pi}{2}, 4\pi]$.
 - (b) Non positive for $x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \cup \left[\frac{5\pi}{2}, \frac{7\pi}{2}\right]$.
- 4. The minimum value of the function is -1 and the maximum is 1. The range is [-1, 1].

Ex 18: Below is an accurate graph of the function $y = \sin(x)$, for $0 \le x \le 4\pi$.



- 1. Find the y-intercept of the graph.
- 2. Find the values of x on $0 \le x \le 4\pi$ for which:
 - (a) $\sin x = 1$
 - (b) $\sin x = 0$
- 3. Find the intervals on $0 \le x \le 4\pi$ where $\sin x$ is:
 - (a) non-negative
 - (b) non-positive.
- 4. Find the range of the function.

Answer:

- 1. The y-intercept is the value of y when x = 0. From the graph, this is 0.
- 2. By reading the x-coordinates from the graph at the required heights:
 - (a) $\sin x = 1$ when $x = \frac{\pi}{2}, \frac{5\pi}{2}$.
 - (b) $\sin x = 0$ when $x = 0, \pi, 2\pi, 3\pi, 4\pi$.

- 3. By observing where the graph is on or above/below the x-axis:
 - (a) Non-negative for $x \in [0, \pi] \cup [2\pi, 3\pi]$.
 - (b) Non-positive for $x \in [\pi, 2\pi] \cup [3\pi, 4\pi]$.
- 4. The minimum value of the function is -1 and the maximum is 1. The range is [-1,1].

C GENERAL SINE AND COSINE FUNCTIONS

C.1 IDENTIFYING PROPERTIES FROM AN EQUATION

Ex 19: For the function $y = 4\cos(x) - 2$, state:

- 1. The amplitude. $\boxed{4}$
- 2. The period. 2π
- 3. The phase shift. 0
- 4. The principal axis. $y = \boxed{-2}$

Answer: The function is in the form $y = a\cos(b(x-c)) + d$. For $y = 4\cos(x) - 2$, we can identify the parameters as a = 4, b = 1, c = 0, d = -2.

- 1. **Amplitude**: |a| = |4| = 4.
- 2. **Period**: $\frac{2\pi}{|b|} = \frac{2\pi}{1} = 2\pi$.
- 3. **Phase Shift**: c = 0. There is no horizontal shift.
- 4. **Principal Axis**: d = -2. The principal axis is the line y = -2.

Ex 20: For the function $y = 2\cos(3x) + 1$, state:

- 1. The amplitude. $\boxed{2}$
- 2. The period. $2\pi/3$
- 3. The phase shift. $\boxed{0}$
- 4. The principal axis. $y = \boxed{1}$

Answer: The function is in the form $y = a\cos(b(x-c)) + d$. For $y = 2\cos(3x) + 1$, we can identify the parameters as a = 2, b = 3, c = 0, d = 1.

- 1. **Amplitude**: |a| = |2| = 2.
- 2. **Period**: $\frac{2\pi}{|b|} = \frac{2\pi}{3}$.
- 3. **Phase Shift**: c = 0. There is no horizontal shift.
- 4. **Principal Axis**: d = 1. The principal axis is the line y = 1.

Ex 21: For the function $y = 3\sin\left(2\left(x - \frac{\pi}{4}\right)\right) + 1$, state:

- 1. The amplitude. 3
- 2. The period. π
- 3. The phase shift. $\frac{\pi}{4}$

4. The principal axis. $y = \boxed{1}$

Answer: The function is in the form $y = a \sin(b(x-c)) + d$.

1. **Amplitude**: a = 3. The amplitude is |a| = 3.

2. **Period**: b = 2. The period is $\frac{2\pi}{|b|} = \frac{2\pi}{2} = \pi$.

3. **Phase Shift**: $c = \frac{\pi}{4}$. The shift is $\frac{\pi}{4}$ to the right.

4. Principal Axis: d = 1. The principal axis is the line y = 1.

Ex 22: For the function $y = -5\sin(3x + \pi) + 7$, state:

1. The amplitude. $\boxed{5}$

2. The period. $2\pi/3$

3. The phase shift. $-\pi/3$

4. The principal axis. $y = \boxed{7}$

Answer: First, we must write the function in the standard form $y = a \sin(b(x-c)) + d$ by factoring out the coefficient of x inside the sine function.

$$y = -5\sin\left(3\left(x + \frac{\pi}{3}\right)\right) + 7$$

From this form, we identify the parameters: $a=-5, b=3, c=-\frac{\pi}{3}, d=7.$

1. **Amplitude**: |a| = |-5| = 5.

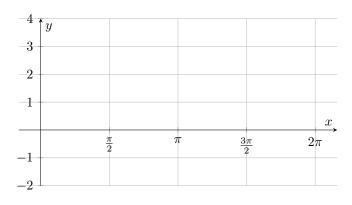
2. **Period**: $\frac{2\pi}{|b|} = \frac{2\pi}{3}$.

3. **Phase Shift**: $c = -\frac{\pi}{3}$. The shift is $\frac{\pi}{3}$ to the left.

4. **Principal Axis**: d = 7. The principal axis is the line y = 7.

C.2 SKETCHING TRANSFORMED FUNCTIONS

Ex 23: Sketch the graph of $y = 2\cos(x) + 1$ for $0 \le x \le 2\pi$.



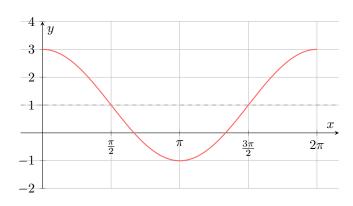
Answer: This is a transformation of $y = \cos(x)$ with a vertical stretch of factor 2 (a = 2) and a vertical shift of 1 unit up (d = 1).

• Principal Axis: y = 1.

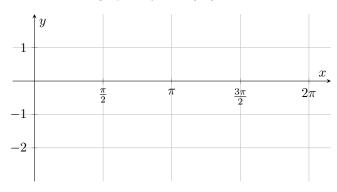
• Amplitude: 2.

• Range: The graph will oscillate between 1-2=-1 and 1+2=3.

• Period: 2π .



Ex 24: Sketch the graph of $y = \sin(2x) - 1$ for $0 \le x \le 2\pi$.



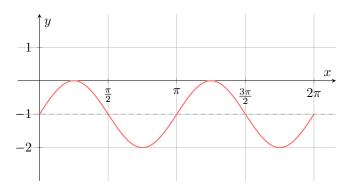
Answer: This is a transformation of $y = \sin(x)$ with a horizontal stretch of factor $\frac{1}{2}$ (b = 2) and a vertical shift of 1 unit down (d = -1).

• Principal Axis: y = -1.

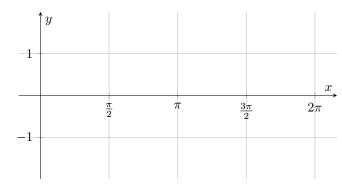
• Amplitude: a = 1.

• Range: The graph will oscillate between -1 - 1 = -2 and -1 + 1 = 0.

• **Period**: $\frac{2\pi}{2} = \pi$. The function will complete two cycles in the domain $[0, 2\pi]$.



Ex 25: Sketch the graph of $y = \cos\left(x - \frac{\pi}{2}\right)$ for $0 \le x \le 2\pi$.



Answer: This is a transformation of $y = \cos(x)$ with a horizontal Assembling these parameters into the form $y = a\sin(b(x-c)) + d$ shift of $\frac{\pi}{2}$ units to the right $(c = \frac{\pi}{2})$.

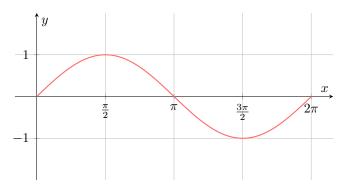
• Principal Axis: y = 0.

• Amplitude: 1.

• Range: [−1, 1].

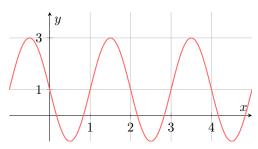
• Period: 2π .

• Note: The graph of $y = \cos(x - \frac{\pi}{2})$ is identical to the graph of $y = \sin(x)$.



C.3 FINDING THE EQUATION FROM A GRAPH

MCQ 26: Which of the following equations best describes the graph shown below?



$$\boxtimes y = 2\sin(\pi(x-1)) + 1$$

$$\Box y = 2\sin(2\pi(x-1)) + 1$$

$$\exists y = 3\sin(\pi(x-1)) - 1$$

$$\Box \ y = \sin(\pi(x+1)) + 2$$

Answer: We identify the key parameters of the sine function from the graph.

- Principal Axis (d): The maximum value is 3 and the minimum value is -1. The principal axis is the line y = $\frac{3+(-1)}{2} = 1$. So, d = 1.
- Amplitude (a): The amplitude is the distance from the principal axis to a maximum: a = 3 - 1 = 2.
- **Period** (b): The graph completes one full cycle from x=1to x = 3. The period is P = 3 - 1 = 2. We use the formula $P = \frac{2\pi}{b}$ to find b:

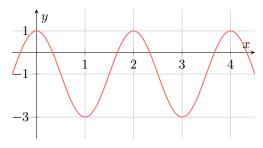
$$2 = \frac{2\pi}{b} \implies b = \pi$$

• Phase Shift (c): A standard sine wave starts at its principal axis (y = 1) and goes up. On the graph, this starting point of a cycle is at x = 1. So, we can choose a phase shift of c = 1.

$$y = 2\sin(\pi(x-1)) + 1$$

This matches the first option.

MCQ 27: Which of the following equations best describes the graph shown below?



$$\boxtimes y = 2\cos(\pi x) - 1$$

$$\exists y = 2\cos(x) - 1$$

Answer: We identify the key parameters from the graph, assuming a cosine function of the form $y = a\cos(b(x-c)) + d$.

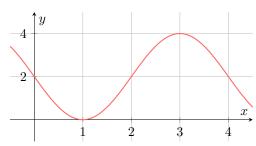
- Principal Axis (d): Max value is 1, min value is -3. The principal axis is $y = \frac{1 + (-3)}{2} = -1$. So, d = -1.
- Amplitude (a): $a = \frac{1-(-3)}{2} = 2$.
- **Period** (b): The graph completes one full cycle from the peak at x = 0 to the next peak at x = 2. The period is P = 2. So, $b = \frac{2\pi}{P} = \frac{2\pi}{2} = \pi$.
- Phase Shift (c): A standard cosine wave starts at a maximum. This graph has a maximum at x = 0, so there is no phase shift. We can choose c = 0.

Assembling these parameters gives:

$$y = 2\cos(\pi(x-0)) - 1 = 2\cos(\pi x) - 1$$

This matches the third option.

MCQ 28: Which of the following equations best describes the graph shown below?



$$y = -2\sin(\pi x) + 2$$

$$\boxtimes y = -2\sin(\frac{\pi}{2}x) + 2$$

Answer: We identify the key parameters from the graph, assuming a sine function of the form $y = a \sin(b(x-c)) + d$.

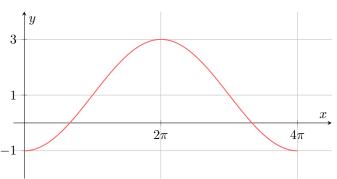
- **Principal Axis** (d): Max value is 4, min value is 0. The principal axis is $y = \frac{4+0}{2} = 2$. So, d = 2.
- Amplitude (a): $a = \frac{4-0}{2} = 2$.
- **Period** (b): The graph completes one full cycle from x = 0 to x = 4. The period is P = 4. So, $b = \frac{2\pi}{P} = \frac{2\pi}{4} = \frac{\pi}{2}$.
- Reflection and Phase Shift (a, c): At x = 0, the graph is on its principal axis (y = 2) and is decreasing. A standard sine wave starts at the principal axis and increases. This indicates a reflection in the x-axis, so the value of a must be negative. Thus, a = -2. Since the cycle starts at x = 0, there is no phase shift (c = 0).

Assembling these parameters gives:

$$y = -2\sin(\frac{\pi}{2}(x-0)) + 2 = -2\sin(\frac{\pi}{2}x) + 2$$

This matches the fourth option.

MCQ 29: Which of the following equations best describes the graph shown below?



$$\exists y = 2\cos(2x) + 1$$

$$y = -2\cos(x) + 1$$

$$\Box y = 2\cos(0.5x) - 1$$

$$\boxtimes y = -2\cos(0.5x) + 1$$

Answer: We identify the key parameters from the graph, assuming a cosine function of the form $y = a \cos(b(x - c)) + d$.

- Principal Axis (d): The maximum value is 3 and the minimum value is -1. The principal axis is the line $y = \frac{3+(-1)}{2} = 1$. So, d = 1.
- Amplitude (|a|): The amplitude is the distance from the principal axis to a maximum: |a| = 3 1 = 2.
- **Period** (b): The graph completes one full cycle from the minimum at x=0 to the next minimum at $x=4\pi$. The period is $P=4\pi$. So, $b=\frac{2\pi}{P}=\frac{2\pi}{4\pi}=\frac{1}{2}=0.5$.
- Reflection and Phase Shift (a, c): A standard cosine function (a > 0) starts at a maximum. This graph starts at a minimum (at x = 0), which indicates a reflection in the principal axis. Therefore, the value of a must be negative, so a = -2. Since the cycle starts at an extremum on the y-axis, there is no phase shift (c = 0).

Assembling these parameters gives:

$$y = -2\cos(0.5x) + 1$$

This matches the fourth option.

D TANGENT FUNCTION

D.1 GRAPHING THE TANGENT FUNCTION FROM VALUES

Ex 30: For $f(x) = \tan(x)$, complete the table of values (rounded to 2 decimal places).

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
tan(x)	0	0.58	1	1.73

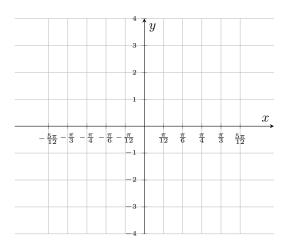
Answer: Ensure your calculator is in radian mode.

		π	π	π		_
r	()	_	_	l —	tan(x)	()
J.	"	6	1	2	0011(2)	

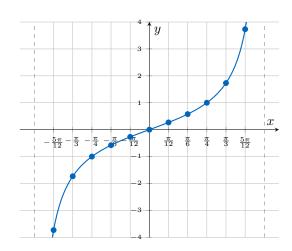
Ex 31: Here is a table of values for the function $f(x) = \tan(x)$ (rounded to 2 decimal places):

Г	r	-5π	$-\pi$	$-\frac{\pi}{}$	$-\pi$	<u> </u>	0	<u>π</u>	$\frac{\pi}{}$	$\frac{\pi}{}$	$\frac{\pi}{}$	5π
L	x	12	3	4	6	12		12	6	4	3	12
	tan(x)	-3.73	-1 73	-1.00	-0.58	-0.27	0	0.27	0.58	1.00	1 73	3 73
L	tan(x)	-0.10	-1.75	1.00	0.00	-0.21		0.21	0.00	1.00	1.70	0.10

Plot the graph of the function on the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.



Answer:



E RECIPROCAL FUNCTIONS

TRIGONOMETRIC

E.1 FINDING DOMAINS AND ASYMPTOTES

MCQ 32: The function $y = \sec(x)$ is undefined for which of the following values?

- $\Box x = 0$
- $\Box x = \pi$
- $\boxtimes x = \frac{\pi}{2}$
- $\Box x = \frac{\pi}{4}$

Answer: The secant function is defined as $\sec(x) = \frac{1}{\cos(x)}$. It is undefined whenever its denominator is zero, i.e., when $\cos(x) = 0$. The values of $\cos(x)$ at the given points are:

- $\cos(0) = 1$
- $\cos(\pi) = -1$
- $\cos(\frac{\pi}{2}) = 0$
- $\cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$

The function is undefined at $x = \frac{\pi}{2}$.

MCQ 33: The function $y = \csc(x)$ is undefined for which of the following values?

- $\Box x = \frac{\pi}{2}$
- $\Box x = \frac{3\pi}{2}$
- $\Box x = \frac{\pi}{4}$
- $\boxtimes x = \pi$

Answer: The cosecant function is defined as $\csc(x) = \frac{1}{\sin(x)}$. It is undefined whenever its denominator is zero, i.e., when $\sin(x) = 0$. The values of $\sin(x)$ at the given points are:

- $\bullet \ \sin(\frac{\pi}{2}) = 1$
- $\sin(\frac{3\pi}{2}) = -1$
- $\sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$
- $\sin(\pi) = 0$

The function is undefined at $x = \pi$.

MCQ 34: The function $y = \cot(x)$ has the same vertical asymptotes as which other function?

- $\Box y = \sin(x)$
- $\boxtimes y = \csc(x)$
- $\Box y = \cos(x)$
- $\Box y = \sec(x)$

Answer: The cotangent function is defined as $\cot(x) = \frac{\cos(x)}{\sin(x)}$. It has vertical asymptotes whenever its denominator, $\sin(x)$, is equal to zero.

The cosecant function is defined as $\csc(x) = \frac{1}{\sin(x)}$. It also has vertical asymptotes whenever its denominator, $\sin(x)$, is equal to zero

Therefore, cot(x) and csc(x) have the same vertical asymptotes.

E.2 SIMPLIFYING TRIGONOMETRIC EXPRESSIONS

Ex 35: Express the function $f(x) = \frac{1}{\csc(x)}$ in terms of a primary trigonometric function.

$$f(x) = \boxed{\sin(x)}$$

Answer: By definition, the cosecant function is the reciprocal of the sine function: $\csc(x) = \frac{1}{\sin(x)}$.

Therefore, the reciprocal of the cosecant function is:

$$f(x) = \frac{1}{\csc(x)} = \frac{1}{1/\sin(x)} = \sin(x)$$

Ex 36: Express the function $f(x) = \tan(x) \cdot \sec(x)$ in terms of sine and cosine.

$$f(x) = sin(x)/\cos^2(x)$$

Answer: We use the definitions $\tan(x) = \frac{\sin x}{\cos x}$ and $\sec(x) = \frac{1}{\cos x}$.

$$f(x) = \tan(x) \cdot \sec(x)$$
$$= \frac{\sin x}{\cos x} \cdot \frac{1}{\cos x}$$
$$= \frac{\sin x}{\cos^2 x}$$

Ex 37: Express $\sec^2(x)$ in terms of $\tan^2(x)$.

$$\sec^2(x) = \boxed{1 + \tan^2(x)}$$

Answer: This relationship comes directly from one of the Pythagorean identities $\sin^2(x) + \cos^2(x) = 1$.

$$\sec^{2}(x) = \frac{1}{\cos^{2}(x)}$$

$$\sec^{2}(x) = \frac{\cos^{2}(x) + \sin^{2}(x)}{\cos^{2}(x)}$$

$$\sec^{2}(x) = 1 + \frac{\sin^{2}(x)}{\cos^{2}(x)}$$

$$\sec^{2}(x) = 1 + \tan^{2}(x)$$

MCQ 38: The expression $\sin(x) \cdot \cot(x)$ simplifies to:

- $\Box \sin^2(x)$
- $\boxtimes \cos^2(x)$
- $\Box \cos(x)$
- \Box 1

Answer: We use the definition of the cotangent function, $\cot(x) = \frac{\cos x}{\sin x}$.

$$\sin(x) \cdot \cot(x) = \sin(x) \cdot \frac{\cos x}{\sin x}$$
$$= \cos x$$

(assuming $\sin x \neq 0$).

E.3 EVALUATING RECIPROCAL FUNCTIONS

Ex 39: Find the exact value of $\cot(\frac{\pi}{6})$.

$$\cot(\frac{\pi}{6}) = \boxed{\sqrt{3}}$$

Answer: The cotangent function is defined as $\cot(x) = \frac{\cos(x)}{\sin(x)}$. We use the known values for the angle $\frac{\pi}{6}$:

$$\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$$
 and $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$

Therefore:

$$\cot\left(\frac{\pi}{6}\right) = \frac{\cos(\pi/6)}{\sin(\pi/6)} = \frac{\sqrt{3}/2}{1/2} = \sqrt{3}$$

Ex 40: Find the exact value of $sec(\pi)$.

$$\sec(\pi) = \boxed{-1}$$

Answer: The secant function is defined as $sec(x) = \frac{1}{cos(x)}$. We use the known value for the angle π :

$$\cos(\pi) = -1$$

Therefore:

$$\sec(\pi) = \frac{1}{\cos(\pi)} = \frac{1}{-1} = -1$$

Ex 41: Find the exact value of $\csc(\frac{3\pi}{2})$.

$$\csc(\frac{3\pi}{2}) = \boxed{-1}$$

Answer: The cosecant function is defined as $\csc(x) = \frac{1}{\sin(x)}$. We use the known value for the angle $\frac{3\pi}{2}$:

$$\sin\left(\frac{3\pi}{2}\right) = -1$$

Therefore:

$$\csc\left(\frac{3\pi}{2}\right) = \frac{1}{\sin(3\pi/2)} = \frac{1}{-1} = -1$$

Ex 42: Find the exact value of $\sec\left(\frac{5\pi}{4}\right)$.

$$\sec\left(\frac{5\pi}{4}\right) = \boxed{-\sqrt{2}}$$

Answer: The secant function is defined as $sec(x) = \frac{1}{cos(x)}$. We first find the value of $\cos\left(\frac{5\pi}{4}\right)$.

The angle $\frac{5\pi}{4}$ is in the third quadrant, where cosine is negative. The reference angle is $\frac{\pi}{4}$.

$$\cos\left(\frac{5\pi}{4}\right) = \cos\left(\pi + \frac{\pi}{4}\right) = -\cos\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

Therefore:

$$\sec\left(\frac{5\pi}{4}\right) = \frac{1}{-\sqrt{2}/2} = -\frac{2}{\sqrt{2}} = -\sqrt{2}$$

INVERSE TRIGONOMETRIC FUNCTIONS

EVALUATING INVERSE TRIGONOMETRIC **FUNCTIONS AT SPECIAL ANGLES**

Ex 43: Find the angle in radians:

$$\cos^{-1}(1) = \boxed{0}$$

Answer: As $\cos 0 = 1$, $\cos^{-1}(1) = 0$.

Ex 44: Find the angle in radians:

$$\sin^{-1}(1) = \boxed{\frac{\pi}{2}}$$

Answer: As $\sin \frac{\pi}{2} = 1$, $\sin^{-1}(1) = \frac{\pi}{2}$.

Ex 45: Find the angle in radians:

$$\sin^{-1}\left(\frac{1}{2}\right) = \boxed{\frac{\pi}{6}}$$

Answer: As $\sin \frac{\pi}{6} = \frac{1}{2}$, $\sin^{-1} \left(\frac{1}{2} \right) = \frac{\pi}{6}$.

Ex 46: Find the angle in radians:

$$\cos^{-1}\left(\frac{1}{2}\right) = \boxed{\frac{\pi}{3}}$$

Answer: As $\cos \frac{\pi}{3} = \frac{1}{2}$, $\cos^{-1}(\frac{1}{2}) = \frac{\pi}{3}$.

Ex 47: Find the angle in radians:

$$\sin^{-1}\left(\frac{\sqrt{2}}{2}\right) = \boxed{\frac{\pi}{4}}$$

Answer: As $\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$, $\sin^{-1} \left(\frac{\sqrt{2}}{2} \right) = \frac{\pi}{4}$.

Ex 48: Find the angle in radians:

$$\cos^{-1}\left(\frac{\sqrt{2}}{2}\right) = \boxed{\frac{\pi}{4}}$$

Answer: As $\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$, $\cos^{-1} \left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$.

Ex 49: Find the angle in radians:

$$\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \boxed{\frac{5\pi}{6}}$$

Answer: As $\cos \frac{5\pi}{6} = -\frac{\sqrt{3}}{2}$ and $\frac{5\pi}{6} \in [0, \pi]$, $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6}$.

Ex 50: Find the angle in radians:

$$\tan^{-1}(1) = \boxed{\frac{\pi}{4}}$$

Answer: As $\tan \frac{\pi}{4} = \frac{\sin \frac{\pi}{4}}{\sin \frac{\pi}{4}} = \frac{\sqrt{2}/2}{\sqrt{2}/2} = 1$, $\tan^{-1}(1) = \frac{\pi}{4}$.

Ex 51: Find the angle in radians:

$$\tan^{-1}\left(\sqrt{3}\right) = \boxed{\frac{\pi}{3}}$$

Answer: As $\tan \frac{\pi}{3} = \frac{\sin \frac{\pi}{3}}{\sin \frac{\pi}{3}} = \frac{\sqrt{3}/2}{1/2} = \sqrt{3}$, $\tan^{-1}(\sqrt{3}) = \frac{\pi}{3}$.

Ex 52: Find the angle in radians:

$$\tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) = \boxed{-\frac{\pi}{6}}$$

Answer: As $\tan\left(-\frac{\pi}{6}\right) = \frac{\sin\left(-\frac{\pi}{6}\right)}{\cos\left(-\frac{\pi}{2}\right)} = \frac{-1/2}{\sqrt{3}/2} = -\frac{1}{\sqrt{3}}$, $\tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) =$

F.2 SIMPLIFYING EXPRESSIONS INVOLVING INVERSE TRIGONOMETRIC FUNCTIONS

Ex 53: Simplify:

$$\arccos\left(\cos\left(-\frac{\pi}{4}\right)\right) = \boxed{\frac{\pi}{4}}$$

Answer:

$$\arccos\left(\cos\left(-\frac{\pi}{4}\right)\right) = \arccos\left(\frac{\sqrt{2}}{2}\right)$$

$$= \frac{\pi}{4}$$

Ex 54: Simplify:

$$\arccos\left(\sin\left(\frac{2\pi}{3}\right)\right) = \boxed{\frac{\pi}{6}}$$

Answer:

$$\arccos\left(\sin\left(\frac{2\pi}{3}\right)\right) = \arccos\left(\frac{\sqrt{3}}{2}\right)$$

$$= \frac{\pi}{6}$$

Ex 55: Simplify:

$$\arctan\left(\cos\left(4\pi\right)\right) = \boxed{\frac{\pi}{4}}$$

Answer:

$$\arctan(\cos(4\pi)) = \arctan(1)$$

= $\frac{\pi}{4}$

Ex 56: Simplify:

$$\arccos\left(\sin\left(\frac{\pi}{3}\right)\right) = \boxed{\frac{\pi}{6}}$$

Answer:

$$\arccos\left(\sin\left(\frac{\pi}{3}\right)\right) = \arccos\left(\frac{\sqrt{3}}{2}\right)$$

$$= \frac{\pi}{6}$$

Ex 57: Simplify:

$$\arcsin\left(\cos\left(\frac{\pi}{6}\right)\right) = \boxed{\frac{\pi}{3}}$$

Answer:

$$\arcsin\left(\cos\left(\frac{\pi}{6}\right)\right) = \arcsin\left(\frac{\sqrt{3}}{2}\right)$$
$$= \frac{\pi}{3}$$

Ex 58: Simplify:

$$\arctan\left(-\tan\left(\frac{\pi}{6}\right)\right) = \boxed{-\frac{\pi}{6}}$$

Answer:

$$\arctan\left(-\tan\left(\frac{\pi}{6}\right)\right) = \arctan\left(-\frac{1}{\sqrt{3}}\right)$$
$$= -\frac{\pi}{6}$$

G SOLVING TRIGONOMETRIC EQUATIONS

G.1 SOLVING BASIC TRIGONOMETRIC EQUATIONS

Ex 59: Solve for x on the domain $0 \le x \le 2\pi$:

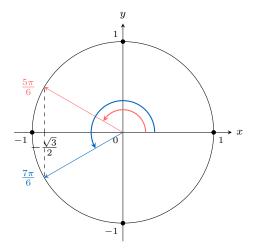
$$\cos x = -\frac{\sqrt{3}}{2}$$

$$x = \boxed{5\pi/6} < x = \boxed{7\pi/6}$$

Answer: We are looking for angles on the unit circle where the x-coordinate is $-\frac{\sqrt{3}}{2}$.

The reference angle for which $\cos(x) = \frac{\sqrt{3}}{2}$ is $\theta = \frac{\pi}{6}$. Cosine is negative in the second and third quadrants.

- Second quadrant solution: $x = \pi \frac{\pi}{6} = \frac{5\pi}{6}$.
- Third quadrant solution: $x = \pi + \frac{\pi}{6} = \frac{7\pi}{6}$.



The solutions on the domain $0 \le x \le 2\pi$ are $x = \frac{5\pi}{6}$ or $x = \frac{7\pi}{6}$.

Ex 60: Solve for x on the domain $0 \le x \le 2\pi$:

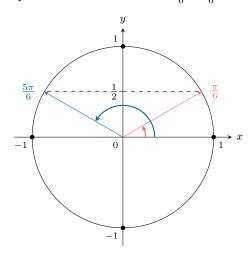
$$\sin x = \frac{1}{2}$$

$$x = \sqrt{\pi/6} < x = \sqrt{5\pi/6}$$

Answer: We are looking for angles on the unit circle where the y-coordinate is $\frac{1}{2}$.

The reference angle for which $\sin(\theta) = \frac{1}{2}$ is $\theta = \frac{\pi}{6}$. Sine is positive in the first and second quadrants.

- First quadrant solution: $x = \frac{\pi}{6}$.
- Second quadrant solution: $x = \pi \frac{\pi}{6} = \frac{5\pi}{6}$.



The solutions on the domain $0 \le x \le 2\pi$ are $x = \frac{\pi}{6}$ or $x = \frac{5\pi}{6}$.

Ex 61: Solve for x on the domain $0 \le x \le 2\pi$:

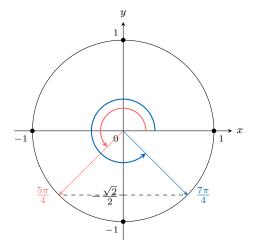
$$\sin x = -\frac{\sqrt{2}}{2}$$

$$x = \sqrt{5\pi/4} < x = \sqrt{7\pi/4}$$

Answer: We are looking for angles on the unit circle where the y-coordinate is $-\frac{\sqrt{2}}{2}$.

The reference angle for which $\sin(\theta) = \frac{\sqrt{2}}{2}$ is $\theta = \frac{\pi}{4}$. Sine is negative in the third and fourth quadrants.

- Third quadrant solution: $x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$.
- Fourth quadrant solution: $x = 2\pi \frac{\pi}{4} = \frac{7\pi}{4}$.



The solutions on the domain $0 \le x \le 2\pi$ are $x = \frac{5\pi}{4}$ or $x = \frac{7\pi}{4}$.

Ex 62: Solve for x on the domain $0 \le x \le 2\pi$:

$$2\cos x = 1$$
$$x = \boxed{\pi/3} < x = \boxed{5\pi/3}$$

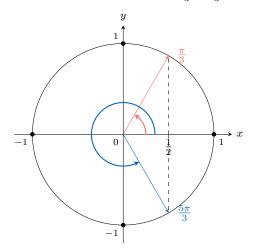
Answer: First, we rearrange the equation to isolate $\cos x$:

$$\cos x = \frac{1}{2}$$

We are looking for angles on the unit circle where the x-coordinate is $\frac{1}{2}$.

The reference angle for which $\cos(\theta) = \frac{1}{2}$ is $\theta = \frac{\pi}{3}$. Cosine is positive in the first and fourth quadrants.

- First quadrant solution: $x = \frac{\pi}{3}$.
- Fourth quadrant solution: $x = 2\pi \frac{\pi}{3} = \frac{5\pi}{3}$.



The solutions on the domain $0 \le x \le 2\pi$ are $x = \frac{\pi}{3}$ or $x = \frac{5\pi}{3}$.

G.2 SOLVING EQUATIONS OF QUADRATIC FORM

Ex 63: Solve for x on the domain $0 \le x \le 2\pi$:

$$\sin^2 x = \frac{1}{2}$$

Answer: First, we take the square root of both sides to isolate $\sin x$.

$$\sin x = \pm \sqrt{\frac{1}{2}} = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2}$$

This gives us two separate equations to solve:

1.
$$\sin x = \frac{\sqrt{2}}{2}$$

2.
$$\sin x = -\frac{\sqrt{2}}{2}$$

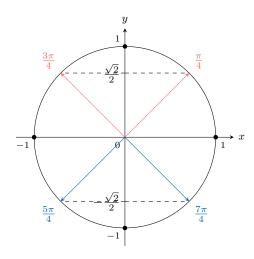
The reference angle for which $\sin(\theta) = \frac{\sqrt{2}}{2}$ is $\theta = \frac{\pi}{4}$.

• For $\sin x = \frac{\sqrt{2}}{2}$ (positive y-coordinate), solutions are in the first and second quadrants:

$$-x = \frac{\pi}{4} \\ -x = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$$

• For $\sin x = -\frac{\sqrt{2}}{2}$ (negative y-coordinate), solutions are in the third and fourth quadrants:

$$-x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$$
$$-x = 2\pi - \frac{\pi}{4} = \frac{7\pi}{4}$$



The four solutions on the domain $0 \le x \le 2\pi$ are $x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$.

Ex 64: Solve for x on the domain $0 \le x \le 2\pi$:

$$\sin^2 x = \frac{3}{4}$$

Answer: First, we take the square root of both sides to isolate $\sin x$.

$$\sin x = \pm \sqrt{\frac{3}{4}} = \pm \frac{\sqrt{3}}{2}$$

This gives us two separate equations to solve:

1.
$$\sin x = \frac{\sqrt{3}}{2}$$

2.
$$\sin x = -\frac{\sqrt{3}}{2}$$

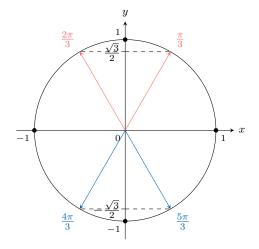
The reference angle for which $\sin(\theta) = \frac{\sqrt{3}}{2}$ is $\theta = \frac{\pi}{3}$.

• For $\sin x = \frac{\sqrt{3}}{2}$ (positive y-coordinate), solutions are in the first and second quadrants:

$$-x = \frac{\pi}{3} \\
-x = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$$

• For $\sin x = -\frac{\sqrt{3}}{2}$ (negative y-coordinate), solutions are in the third and fourth quadrants:

$$-x = \pi + \frac{\pi}{3} = \frac{4\pi}{3}$$
$$-x = 2\pi - \frac{\pi}{3} = \frac{5\pi}{3}$$



The four solutions on the domain $0 \le x \le 2\pi$ are x = $\frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}.$

G.3 SOLVING EQUATIONS WITH TRANSFORMED **ARGUMENTS**

Ex 65: Consider the solution of trigonometric equations.

- 1. Find all solutions to the equation $\sin(x) = \frac{\sqrt{2}}{2}$ on the domain
- 2. Hence, find all solutions to the equation $\sin(2x) = \frac{\sqrt{2}}{2}$ on the domain $0 \le x \le \pi$.

Answer:

1. We are looking for angles on the unit circle in the interval $[0, 2\pi]$ where the y-coordinate is $\frac{\sqrt{2}}{2}$. The reference angle is $\arcsin(\frac{\sqrt{2}}{2}) = \frac{\pi}{4}$.

Sine is positive in the first and second quadrants.

- First quadrant solution: $x = \frac{\pi}{4}$.
- Second quadrant solution: $x = \pi \frac{\pi}{4} = \frac{3\pi}{4}$.

The solutions are $x = \frac{\pi}{4}$ and $x = \frac{3\pi}{4}$.

2. To solve $\sin(2x) = \frac{\sqrt{2}}{2}$, we let u = 2x.

First, we must adjust the domain for the new variable u. If $0 \le x \le \pi$, then $2 \times 0 \le 2x \le 2 \times \pi$, so the new domain is $0 \le u \le 2\pi$.

We need to find all values of u in this new domain for which $\sin(u) = \frac{\sqrt{2}}{2}.$

This is precisely the problem we solved in part (1). The solutions for u in the interval $[0, 2\pi]$ are:

$$u = \frac{\pi}{4}$$
 and $u = \frac{3\pi}{4}$

Finally, we substitute back u = 2x and solve for x:

•
$$2x = \frac{\pi}{4} \implies x = \frac{\pi}{8}$$

•
$$2x = \frac{3\pi}{4} \implies x = \frac{3\pi}{8}$$

Both of these values lie within the required domain $0 \le x \le$

The solutions are $x = \frac{\pi}{8}$ and $x = \frac{3\pi}{8}$.

Ex 66: Consider the solution of trigonometric equations.

- 1. Find all solutions to the equation $\cos(x) = -\frac{1}{2}$ on the domain $0 \le x \le 2\pi$.
- 2. Hence, find all solutions to the equation $\cos(x-\frac{\pi}{3})=-\frac{1}{2}$ on the domain $0 \le x \le 2\pi$.

Answer:

- 1. We are looking for angles on the unit circle in the interval $[0,2\pi]$ where the x-coordinate is $-\frac{1}{2}$. The reference angle is $\arccos(\frac{1}{2}) = \frac{\pi}{3}$. Cosine is negative in the second and third quadrants.
 - Second quadrant solution: $x = \pi \frac{\pi}{3} = \frac{2\pi}{3}$.
 - Third quadrant solution: $x = \pi + \frac{\pi}{3} = \frac{4\pi}{3}$.

The solutions are $x = \frac{2\pi}{3}$ and $x = \frac{4\pi}{3}$.

2. To solve $\cos(x - \frac{\pi}{3}) = -\frac{1}{2}$, we let $u = x - \frac{\pi}{3}$. First, we must adjust the domain for the new variable u.

If $0 \le x \le 2\pi$, then $0 - \frac{\pi}{3} \le x - \frac{\pi}{3} \le 2\pi - \frac{\pi}{3}$, so the new domain is $-\frac{\pi}{3} \le u \le \frac{5\pi}{3}$. We need to find all values of u in this new domain for which

 $\cos(u) = -\frac{1}{2}.$

From part (1), the solutions in the interval $[0, 2\pi]$ are $u = \frac{2\pi}{3}$ and $u = \frac{4\pi}{3}$. Both of these lie within our domain for u.

We must also check for negative solutions. The solution equivalent to $\frac{4\pi}{3}$ in the negative direction is $\frac{4\pi}{3} - 2\pi = -\frac{2\pi}{3}$. This is outside our domain.

The solutions for u in the interval $\left[-\frac{\pi}{3}, \frac{5\pi}{3}\right]$ are therefore $u = \frac{2\pi}{3}$ and $u = \frac{4\pi}{3}$.

Finally, we substitute back $u = x - \frac{\pi}{3}$ and solve for x:

•
$$x - \frac{\pi}{3} = \frac{2\pi}{3} \implies x = \frac{3\pi}{3} = \pi$$

$$\bullet \ x - \frac{\pi}{3} = \frac{4\pi}{3} \implies x = \frac{5\pi}{3}$$

Both values lie within the required domain $0 \le x \le 2\pi$. The solutions are $x = \pi$ and $x = \frac{5\pi}{3}$.

Ex 67: Solve for x on the domain $0 \le x < 2\pi$:

$$\cos\left(x - \frac{\pi}{5}\right) = 0$$

Answer.

- 1. Substitution: Let $u = x \frac{\pi}{5}$. The equation becomes
- 2. Adjust the domain: We transform the domain for x into a new domain for u. If $0 \le x < 2\pi$, then:

$$0 - \frac{\pi}{5} \le x - \frac{\pi}{5} < 2\pi - \frac{\pi}{5}$$

$$-\frac{\pi}{5} \le u < \frac{9\pi}{5}$$

The new domain for u is $\left[-\frac{\pi}{5}, \frac{9\pi}{5}\right)$.

3. Solve for u: We need to find all values of u in this new domain for which $\cos(u) = 0$.

The general solution for $\cos(u) = 0$ is $u = \frac{\pi}{2} + k\pi$ for any integer k. We find the solutions within our domain for u:

- $k=0: u=\frac{\pi}{2}$. (This is in the interval $\left[-\frac{\pi}{5},\frac{9\pi}{5}\right]$)
- $k=1: u=\frac{\pi}{2}+\pi=\frac{3\pi}{2}$. (This is also in the interval)
- $k=2: u=\frac{\pi}{2}+2\pi=\frac{5\pi}{2}$. (This is outside the interval as $\frac{5\pi}{2} = 2.5\pi^2$ and $\frac{9\pi}{5} = 1.8\pi$)
- $k=-1: u=\frac{\pi}{2}-\pi=-\frac{\pi}{2}.$ (This is outside the interval as $-\frac{\pi}{2}<-\frac{\pi}{5}$)

The solutions for u are $\frac{\pi}{2}$ and $\frac{3\pi}{2}$.

- 4. Solve for x: Now we substitute back $u = x \frac{\pi}{5}$ and solve

 - $x \frac{\pi}{5} = \frac{\pi}{2} \implies x = \frac{\pi}{2} + \frac{\pi}{5} = \frac{5\pi + 2\pi}{10} = \frac{7\pi}{10}$ $x \frac{\pi}{5} = \frac{3\pi}{2} \implies x = \frac{3\pi}{2} + \frac{\pi}{5} = \frac{15\pi + 2\pi}{10} = \frac{17\pi}{10}$

Both values are in the original domain $[0, 2\pi)$. The solutions are $x = \frac{7\pi}{10}$ and $x = \frac{17\pi}{10}$.

Ex 68: Consider the solution of trigonometric equations.

- 1. Find all solutions to the equation tan(x) = 1 on the domain $0 \le x \le \pi$.
- 2. Hence, find all solutions to the equation tan(2x) = 1 on the domain $0 \le x \le 2\pi$.

Answer:

- 1. The reference angle for which tan(x) = 1 is $x = \frac{\pi}{4}$. Since the period of the tangent function is π , this is the only solution in the interval $[0, \pi]$. The solution is $x = \frac{\pi}{4}$.
- 2. To solve tan(2x) = 1, we let u = 2x.

First, we adjust the domain for the new variable u.

If $0 \le x \le 2\pi$, then $0 \le 2x \le 4\pi$, so the new domain is $0 \le u \le 4\pi$.

We need to find all values of u in this new domain for which $\tan(u) = 1$. From part (1), the base solution is $u = \frac{\pi}{4}$. Since the period of tangent is π , the general solution for u

is $u = \frac{\pi}{4} + k\pi$, where k is an integer. We find the solutions for u that are in the interval $[0, 4\pi]$:

- $k = 0 : u = \frac{\pi}{4}$
- $k=1: u=\frac{\pi}{4}+\pi=\frac{5\pi}{4}$
- $k=2: u=\frac{\pi}{4}+2\pi=\frac{9\pi}{4}$
- $k=3: u=\frac{\pi}{4}+3\pi=\frac{13\pi}{4}$

(For k=4, $u=\frac{17\pi}{4}$ which is greater than 4π).

Finally, we substitute back u = 2x and solve for x by dividing each solution by 2:

$$x = \frac{\pi}{8}, \quad x = \frac{5\pi}{8}, \quad x = \frac{9\pi}{8}, \quad x = \frac{13\pi}{8}$$

These are the four solutions in the domain $0 \le x \le 2\pi$.

Ex 69: Consider the solution of trigonometric equations.

1. Find all solutions to the equation $cos(x) = \frac{1}{2}$ on the domain $0 \le x \le 2\pi$.

2. Hence, find all solutions to the equation $\cos(\frac{x}{2}) = \frac{1}{2}$ on the domain $0 \le x \le 4\pi$.

Answer:

- 1. We are looking for angles on the unit circle in the interval $[0,2\pi]$ where the x-coordinate is $\frac{1}{2}$. The reference angle is $\arccos(\frac{1}{2}) = \frac{\pi}{3}$. Cosine is positive in the first and fourth quadrants.
 - First quadrant solution: $x = \frac{\pi}{3}$.
 - Fourth quadrant solution: $x = 2\pi \frac{\pi}{3} = \frac{5\pi}{3}$.

The solutions are $x = \frac{\pi}{3}$ and $x = \frac{5\pi}{3}$.

2. To solve $\cos(\frac{x}{2}) = \frac{1}{2}$, we let $u = \frac{x}{2}$. First, we must adjust the domain for the new variable u. If $0 \le x \le 4\pi$, then $\frac{0}{2} \le \frac{x}{2} \le \frac{4\pi}{2}$, so the new domain is $0 \le u \le 2\pi$. We need to find all values of u in this new domain for which $\cos(u) = \frac{1}{2}$. This is precisely the problem we solved in part (1). The solutions for u in the interval $[0, 2\pi]$ are:

$$u = \frac{\pi}{3}$$
 and $u = \frac{5\pi}{3}$

Finally, we substitute back $u = \frac{x}{2}$ and solve for x by multiplying by 2:

- \bullet $\frac{x}{2} = \frac{\pi}{3} \implies x = \frac{2\pi}{3}$
- \bullet $\frac{x}{2} = \frac{5\pi}{2} \implies x = \frac{10\pi}{2}$

Both of these values lie within the required domain $0 \le x \le$ 4π . The solutions are $x = \frac{2\pi}{3}$ and $x = \frac{10\pi}{3}$.

MODELING PERIODIC DATA WITH A SINE FUNCTION

H.1 MODELING REAL-WORLD PHENOMENA

The horizontal displacement, D cm, of the bob of a pendulum from its central position is modelled by a sine function of time, t seconds. The bob is released from its maximum displacement of 10 cm at t = 0.25 seconds. It swings to a minimum displacement of -10 cm and first returns to its maximum displacement at t = 1.25 seconds.

Find a sine function of the form $D(t) = a\sin(b(t-c)) + d$ to model this motion.

Answer:

1. Find Vertical Shift (d): The max displacement is 10 and the \min is -10.

$$d = \frac{10 + (-10)}{2} = 0$$

2. Find Amplitude (a):

$$a = \frac{10 - (-10)}{2} = 10$$

3. Find Period (b): The time from a maximum (t = 0.25) to the next maximum (t = 1.25) is one full period. The period is P = 1.25 - 0.25 = 1 second.

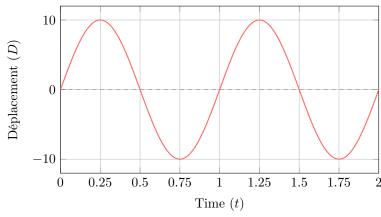
$$b = \frac{2\pi}{P} = \frac{2\pi}{1} = 2\pi$$

4. Find Phase Shift (c): Our model is $D(t) = 10\sin(2\pi(t-c))$. A standard sine function starts at its principal axis (y=0) and is increasing. The time from a starting point to a maximum is one quarter of a period. Since the maximum is at t=0.25 and the period is 1, the starting point of the sine cycle must be a quarter of a period earlier.

$$c = 0.25 - \frac{1}{4}P = 0.25 - \frac{1}{4}(1) = 0$$

5. Final Model:

$$D(t) = 10\sin(2\pi t)$$



Ex 71: The height H (in metres) of a rider on a Ferris wheel after t seconds is recorded. The wheel rotates at a constant speed. The maximum height is 25 metres and the minimum height is 1 metre. The wheel completes one full revolution every 20 seconds. At t = 0, the rider is at the bottom of the wheel.

Find a cosine function of the form $H(t) = a\cos(b(t-c)) + d$ to model the rider's height.

Answer:

1. **Find Vertical Shift** (d): The max value is 25 and the min value is 1.

$$d = \frac{25+1}{2} = 13$$

2. Find Amplitude (a):

$$|a| = \frac{25 - 1}{2} = 12$$

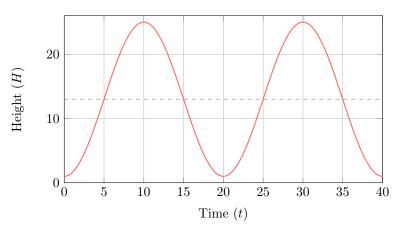
Since the rider starts at the bottom of the wheel (a minimum), we should use a reflected cosine function, so we choose a=-12.

3. Find Period (b): The period is given as P = 20 seconds.

$$b = \frac{2\pi}{P} = \frac{2\pi}{20} = \frac{\pi}{10}$$

- 4. Find Phase Shift (c): A standard reflected cosine function (a < 0) starts at a minimum on the y-axis. Since the rider is at the minimum at t = 0, there is no phase shift. We can set c = 0.
- 5. Final Model:

$$H(t) = -12\cos\left(\frac{\pi}{10}t\right) + 13$$



Ex 72: The depth of water, D metres, in a harbour can be modelled by a sinusoidal function of time, t hours after midnight. The depth has a maximum of 14m at 3:00 am and a minimum of 2m at 9:00 am.

Find a cosine function of the form $D(t) = a\cos(b(t-c)) + d$ to model the water depth.

Answer:

1. Find Vertical Shift (d): Max value = 14, min value = 2.

$$d = \frac{14+2}{2} = 8$$

2. Find Amplitude (a):

$$a = \frac{14 - 2}{2} = 6$$

Since we are modeling with a standard (non-reflected) cosine, we use a=6.

3. Find Period (b): The time from a maximum (3:00) to the next minimum (9:00) is 9-3=6 hours. This is half a period.

The full period is $P = 2 \times 6 = 12$ hours.

$$b = \frac{2\pi}{P} = \frac{2\pi}{12} = \frac{\pi}{6}$$

- 4. Find Phase Shift (c): A standard cosine function starts at a maximum. The first maximum occurs at t = 3 (3:00 am). Therefore, the graph is shifted 3 units to the right. We set the phase shift c = 3.
- 5. Final Model:

$$D(t) = 6\cos\left(\frac{\pi}{6}(t-3)\right) + 8$$

