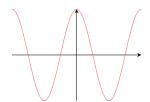
A PERIODIC FUNCTION

A.1 IDENTIFYING PERIODIC BEHAVIOUR FROM A GRAPH

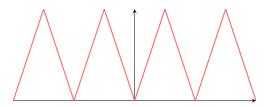
MCQ 1: Is the function shown in the graph below periodic?



□ Yes

□ No

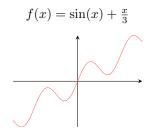
MCQ 2: Is the function shown in the graph below periodic?



□ Yes

 \square No

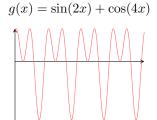
MCQ 3: Is the function shown in the graph below periodic?



 \square Yes

 \square No

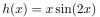
MCQ 4: Is the function shown in the graph below periodic?

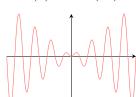


 \square Yes

 \square No

MCQ 5: Is the function shown in the graph below periodic?



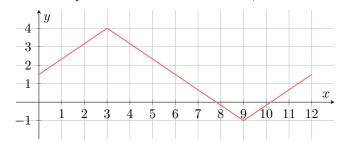


☐ Yes

□ No

A.2 IDENTIFYING PROPERTIES OF PERIODIC FUNCTIONS

Ex 6: For the periodic function shown below, find:

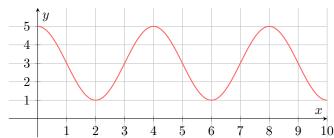


1. The period is

2. The equation of the principal axis is y =

3. The amplitude is

Ex 7: For the periodic function shown below, find:

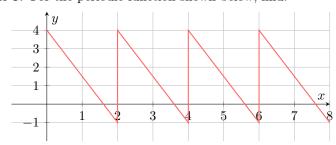


1. The period is

2. The equation of the principal axis is $y = \Box$

3. The amplitude is

Ex 8: For the periodic function shown below, find:



1. The period is

2. The equation of the principal axis is y =

3. The amplitude is

B SINE AND COSINE FUNCTION

B.1 COMPLETING TABLES OF VALUES

For $f(x) = \sin(x)$, complete the table of values for the multiples of $\frac{\pi}{8}$ (rounded to 2 decimal places):

x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3\pi}{8}$	$\frac{\pi}{2}$
$\sin(x)$					

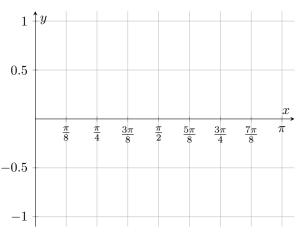
Complete the table of values for the multiples of $\frac{\pi}{6}$ (rounded to 2 decimal places):

_							
			π	π	π	2π	5π
	x	0	<u>-</u>	-	<u> </u>		<u>-</u>
ł			0	3	 	3	0
	$\cos(x)$						

Ex 13: Here is a table of values for the function $f(x) = \cos(x)$:

Γ	x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3\pi}{8}$	$\frac{\pi}{2}$	$\frac{5\pi}{8}$	$\frac{3\pi}{4}$	$\frac{7\pi}{8}$
ľ	$\cos(x)$	1	0.92	0.71	0.38	0	-0.38	-0.71	-0.92

Plot the graph of the function.

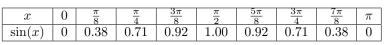


x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$
$\cos(x)$						

Ex 14: Here is a table of values for the function $f(x) = \cos(x)$: **B.2 PLOTTING GRAPHS**

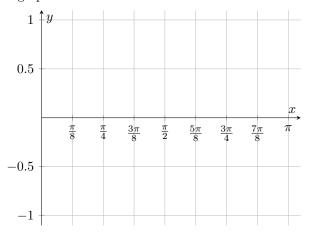
x	$-\pi$	$-\frac{3\pi}{4}$	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$
$\cos(x)$	-1	-0.71	0	0.71	1	0.71	0	-0.71

Plot the graph of the function on the interval $[-\pi; \pi]$:



Ex 11: Here is a table of values for the function $f(x) = \sin(x)$:

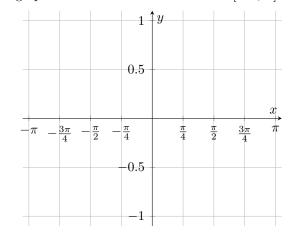
Plot the graph of the function.



Ex 12: Here is a table of values for the function $f(x) = \sin(x)$:

x	$-\pi$	$-\frac{3\pi}{4}$	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$
$\sin(x)$	0	-0.71	-1.00	-0.71	0	0.71	1	0.71

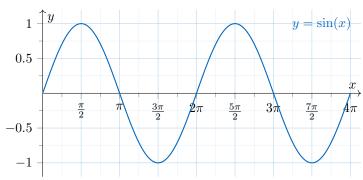
Plot the graph of the function on the interval $[-\pi; \pi]$:



0.5 -0.5

B.3 READING GRAPHS

Ex 15: Below is the graph of the function $y = \sin(x)$, for $0 \le x \le 1$ $x \leq 4\pi$.

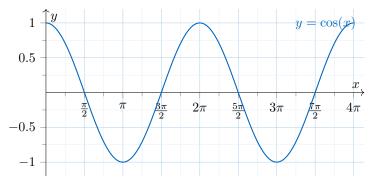


1. Find the *y*-intercept of the graph.

(0,

2. Use the graph to determine the values of x in the interval $0 \le x \le 4\pi$ such that $\sin(x) = 1$:

Ex 16: Below is the graph of the function $y = \cos(x)$, for $0 \le x \le 4\pi$.

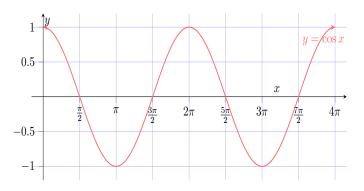


1. Find the *y*-intercept of the graph.

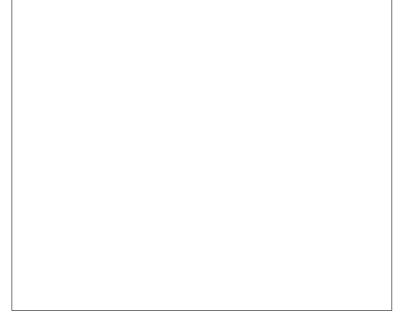
2. Use the graph to determine the values of x in the interval $0 \le x \le 4\pi$ such that $\cos(x) = 0$:

B.4 READING KEY FEATURES FROM A GRAPH

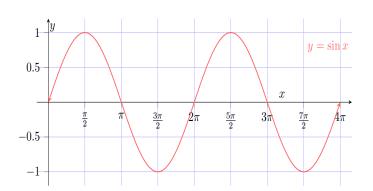
Ex 17: Below is an accurate graph of the function $y = \cos(x)$, for $0 \le x \le 4\pi$.



- 1. Find the y-intercept of the graph.
- 2. Find the values of x on $0 \le x \le 4\pi$ for which:
 - (a) $\cos x = 1$
 - (b) $\cos x = 0$
- 3. Find the intervals on $0 \le x \le 4\pi$ where $\cos x$ is:
 - (a) non negative.
 - (b) non positive
- 4. Find the range of the function.



Ex 18: Below is an accurate graph of the function $y = \sin(x)$, for $0 \le x \le 4\pi$.

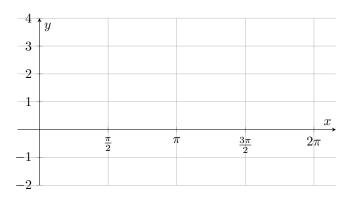


- 1. Find the y-intercept of the graph.
- 2. Find the values of x on $0 \le x \le 4\pi$ for which:
 - (a) $\sin x = 1$
 - (b) $\sin x = 0$
- 3. Find the intervals on $0 \le x \le 4\pi$ where $\sin x$ is:
 - (a) non-negative
 - (b) non-positive.
- 4. Find the range of the function.

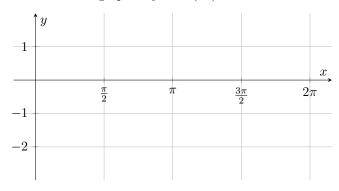
C GENERAL FUNCTIONS	SINE	AND	COSINE
C.1 IDENTIFYING EQUATION	PROPE	RTIES	FROM AN
Ex 19: For the function y	$y = 4\cos(x)$	-2, state	e:
1. The amplitude.			
2. The period.			
3. The phase shift.			
4. The principal axis. $y = 0$	=		
Ex 20: For the function y	$y = 2\cos(3x)$	(x) + 1, star	te:
1. The amplitude.			
2. The period.			
3. The phase shift.			
4. The principal axis. $y = 0$			
Ex 21: For the function y	$y = 3\sin\left(2\right)$	$\left(x-\frac{\pi}{4}\right)$	+ 1, state:
1. The amplitude.			
2. The period.			
3. The phase shift.			
4. The principal axis. $y = 0$			
Ex 22: For the function y	$y = -5\sin(3t)$	$3x + \pi) +$	7, state:
1. The amplitude.			
2. The period.			
3. The phase shift.			
o. The phase sinte.			

C.2 SKETCHING TRANSFORMED FUNCTIONS

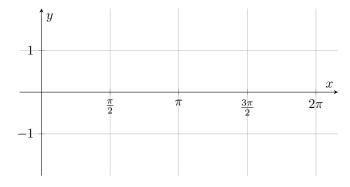
Ex 23: Sketch the graph of $y = 2\cos(x) + 1$ for $0 \le x \le 2\pi$.



Ex 24: Sketch the graph of $y = \sin(2x) - 1$ for $0 \le x \le 2\pi$.

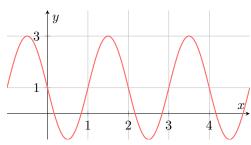


Ex 25: Sketch the graph of $y = \cos\left(x - \frac{\pi}{2}\right)$ for $0 \le x \le 2\pi$.



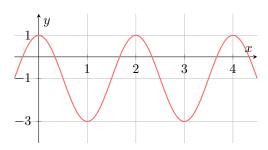
C.3 FINDING THE EQUATION FROM A GRAPH

MCQ 26: Which of the following equations best describes the graph shown below?



- $\exists y = 2\sin(\pi(x-1)) + 1$
- $\exists y = 2\sin(2\pi(x-1)) + 1$
- $\exists y = 3\sin(\pi(x-1)) 1$
- $\exists y = \sin(\pi(x+1)) + 2$

MCQ 27: Which of the following equations best describes the graph shown below?



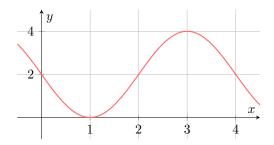
$$\exists y = 2\cos(\pi x) + 1$$

$$\exists y = \cos(2\pi x) - 1$$

$$\exists y = 2\cos(\pi x) - 1$$

$$\exists y = 2\cos(x) - 1$$

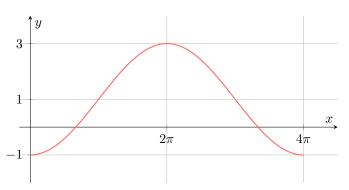
MCQ 28: Which of the following equations best describes the graph shown below?



$$\exists y = 2\sin(\frac{\pi}{2}x) + 2$$

$$y = -2\sin(\pi x) + 2$$

MCQ 29: Which of the following equations best describes the graph shown below?



$$\exists y = 2\cos(2x) + 1$$

D TANGENT FUNCTION

D.1 GRAPHING THE TANGENT FUNCTION FROM VALUES

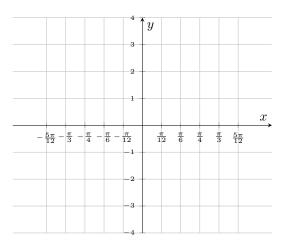
Ex 30: For $f(x) = \tan(x)$, complete the table of values (rounded to 2 decimal places).

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
tan(x)				

Ex 31: Here is a table of values for the function $f(x) = \tan(x)$ (rounded to 2 decimal places):

ſ	œ	$_{5\pi}$		_ T	<u> </u>	π_	Λ	π_	π	π	π	5π
ı	ı	12	$-{3}$	$-\frac{1}{4}$	$-\frac{1}{6}$	$-\frac{12}{12}$	U	$\overline{12}$	6	$\overline{4}$	3	12
ſ	tan(x)	-3 73	-1 73	-1.00	-0.58	-0.27	n	0.27	0.58	1.00	1 73	3 73
ı	uaii(x)	-3.13	-1.10	-1.00	-0.58	-0.21	0	0.21	0.56	1.00	1.70	3.73

Plot the graph of the function on the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.



E RECIPROCAL TRIGONOMETRIC FUNCTIONS

E.1 FINDING DOMAINS AND ASYMPTOTES

MCQ 32: The function $y = \sec(x)$ is undefined for which of the following values?

$$\Box x = 0$$

$$\Box x = \pi$$

$$\Box x = \frac{\pi}{2}$$

$$\Box x = \frac{\pi}{4}$$

MCQ 33: The function $y = \csc(x)$ is undefined for which of the following values?

$$\Box x = \frac{\pi}{2}$$

$$\Box x = \frac{3\pi}{2}$$

$$\Box x = \frac{\pi}{4}$$

$$\Box x = \pi$$

MCQ 34: The function $y = \cot(x)$ has the same vertical asymptotes as which other function?

$\exists y = \sin(x)$

$$\Box y = \csc(x)$$

$$\exists y = \cos(x)$$

$$\square \ y = \sec(x)$$

E.2 SIMPLIFYING TRIGONOMETRIC EXPRESSIONS

Ex 35: Express the function $f(x) = \frac{1}{\csc(x)}$ in terms of a primary trigonometric function.

$$f(x) =$$

Ex 36: Express the function $f(x) = \tan(x) \cdot \sec(x)$ in terms of sine and cosine.

$$f(x) =$$

Ex 37: Express $\sec^2(x)$ in terms of $\tan^2(x)$.

$$\sec^2(x) =$$

MCQ 38: The expression $\sin(x) \cdot \cot(x)$ simplifies to:

$$\Box \sin^2(x)$$

$$\Box \cos^2(x)$$

$$\Box \cos(x)$$

 \Box 1

E.3 EVALUATING RECIPROCAL FUNCTIONS

Ex 39: Find the exact value of $\cot(\frac{\pi}{6})$.

$$\cot(\frac{\pi}{6}) =$$

Ex 40: Find the exact value of $sec(\pi)$.

Ex 41: Find the exact value of $\csc(\frac{3\pi}{2})$.

$$\csc(\frac{3\pi}{2}) = \boxed{}$$

Ex 42: Find the exact value of $\sec\left(\frac{5\pi}{4}\right)$.

$$\sec\left(\frac{5\pi}{4}\right) = \boxed{}$$

F INVERSE TRIGONOMETRIC FUNCTIONS

F.1 EVALUATING INVERSE TRIGONOMETRIC FUNCTIONS AT SPECIAL ANGLES

Ex 43: Find the angle in radians:

$$\cos^{-1}(1) =$$

Ex 44: Find the angle in radians:

$$\sin^{-1}(1) =$$

Ex 45: Find the angle in radians:

$$\sin^{-1}\left(\frac{1}{2}\right) =$$

Ex 46: Find the angle in radians:

$$\cos^{-1}\left(\frac{1}{2}\right) =$$

Ex 47: Find the angle in radians:

$$\sin^{-1}\left(\frac{\sqrt{2}}{2}\right) = \boxed{\phantom{\frac{1}{2}}}$$

Ex 48: Find the angle in radians:

$$\cos^{-1}\left(\frac{\sqrt{2}}{2}\right) = \boxed{}$$

Ex 49: Find the angle in radians:

$$\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \boxed{}$$

Ex 50: Find the angle in radians:

$$\tan^{-1}(1) =$$

Ex 51: Find the angle in radians:

$$\tan^{-1}\left(\sqrt{3}\right) =$$

Ex 52: Find the angle in radians:

$$\tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) =$$

F.2 SIMPLIFYING EXPRESSIONS INVOLVING INVERSE TRIGONOMETRIC FUNCTIONS

Ex 53: Simplify:

$$\arccos\left(\cos\left(-\frac{\pi}{4}\right)\right) =$$

Ex 54: Simplify:

$$\arccos\left(\sin\left(\frac{2\pi}{3}\right)\right) =$$

Ex 55: Simplify:

$$\arctan\left(\cos\left(4\pi\right)\right) =$$

Ex 56: Simplify:

$$\arccos\left(\sin\left(\frac{\pi}{3}\right)\right) =$$

Ex 57: Simplify:

$$\arcsin\left(\cos\left(\frac{\pi}{6}\right)\right) =$$

Ex 58: Simplify:

$$\arctan\left(-\tan\left(\frac{\pi}{6}\right)\right) =$$

G SOLVING TRIGONOMETRIC EQUATIONS

G.1 SOLVING BASIC TRIGONOMETRIC EQUATIONS

Ex 59: Solve for x on the domain $0 \le x \le 2\pi$:

$$\cos x = -\frac{\sqrt{3}}{2}$$

Ex 60: Solve for x on the domain $0 \le x \le 2\pi$:

$$\sin x = \frac{1}{2}$$

$$x = \boxed{} < x = \boxed{}$$

Ex 61: Solve for x on the domain $0 \le x \le 2\pi$:

$$\sin x = -\frac{\sqrt{2}}{2}$$

$$x = \boxed{} \langle x = \boxed{}$$

Ex 62: Solve for x on the domain $0 \le x \le 2\pi$:

$$2\cos x = 1$$

G.2 SOLVING EQUATIONS OF QUADRATIC FORM

Ex 63: Solve for x on the domain $0 \le x \le 2\pi$:

$$\sin^2 x = \frac{1}{2}$$

Ex 64: Solve for x on the domain $0 \le x \le 2\pi$:

$$\sin^2 x = \frac{3}{4}$$

G.3 SOLVING EQUATIONS WITH TRANSFORMED ARGUMENTS

Ex 65: Consider the solution of trigonometric equations.

- 1. Find all solutions to the equation $\sin(x) = \frac{\sqrt{2}}{2}$ on the domain $0 \leq x \leq 2\pi.$
- 2. Hence, find all solutions to the equation $\sin(2x) = \frac{\sqrt{2}}{2}$ on the domain $0 \le x \le \pi$.

Ex 66: Consider the solution of trigonometric equations.

- 1. Find all solutions to the equation $\cos(x) = -\frac{1}{2}$ on the domain $0 \le x \le 2\pi$.
- 2. Hence, find all solutions to the equation $\cos(x \frac{\pi}{3}) = -\frac{1}{2}$ on the domain $0 \le x \le 2\pi$.

Ex 67: Solve for x on the domain $0 \le x < 2\pi$: $\cos\left(x - \frac{\pi}{5}\right) = 0$	 Ex 69: Consider the solution of trigonometric equations. Find all solutions to the equation cos(x) = ½ on the domain 0 ≤ x ≤ 2π. Hence, find all solutions to the equation cos(½) = ½ on the domain 0 ≤ x ≤ 4π.

 \mathbf{Ex} **68:** Consider the solution of trigonometric equations.

- 1. Find all solutions to the equation $\tan(x)=1$ on the domain $0\leq x\leq \pi.$
- 2. Hence, find all solutions to the equation $\tan(2x)=1$ on the domain $0\leq x\leq 2\pi$.

H MODELING PERIODIC DATA WITH A SINE FUNCTION

H.1 MODELING REAL-WORLD PHENOMENA

Ex 70: The horizontal displacement, D cm, of the bob of a pendulum from its central position is modelled by a sine function of time, t seconds. The bob is released from its maximum displacement of 10 cm at t=0.25 seconds. It swings

to a minimum displacement of -10 cm and first returns to its	model the water depth.
maximum displacement at $t = 1.25$ seconds. Find a sine function of the form $D(t) = a\sin(b(t-c)) + d$ to model this motion.	
Ex 71: The height H (in metres) of a rider on a Ferris wheel after t seconds is recorded. The wheel rotates at a	
constant speed. The maximum height is 25 metres and the minimum height is 1 metre. The wheel completes one full revolution every 20 seconds. At $t=0$, the rider is at the bottom of the wheel. Find a cosine function of the form $H(t)=a\cos(b(t-c))+d$ to	
model the rider's height.	

Ex 72: The depth of water, D metres, in a harbour can be modelled by a sinusoidal function of time, t hours after midnight. The depth has a maximum of 14m at 3:00 am and a minimum of 2m at 9:00 am.

Find a cosine function of the form $D(t) = a\cos(b(t-c)) + d$ to