SQUARE ROOTS

A WHAT ARE SQUARE ROOTS?

Definition Square root

The square root of a non-negative number a (that is, $a \ge 0$), written as \sqrt{a} , is the non-negative number that, when multiplied by itself, gives a.

$$\left(\sqrt{a}\right)^2 = a$$

Note

- The square root symbol $\sqrt{}$ always asks for the **positive** root. For example, $\sqrt{25} = 5$. It is a common mistake to think that $\sqrt{25}$ is ± 5 . While it's true that both $5^2 = 25$ and $(-5)^2 = 25$, the symbol $\sqrt{25}$ refers only to the positive solution, which is 5.
- Why can't we take the square root of a negative number (in the real numbers)? Consider $\sqrt{-9}$. To find this value, we need a number that, when multiplied by itself, gives -9.
 - A positive number squared is positive $(3 \times 3 = 9)$.
 - A negative number squared is also positive $(-3 \times -3 = 9)$.

No real number, when squared, can result in a negative number. Therefore, we cannot find the square root of a negative number in the set of real numbers.

Definition Perfect Squares -

A perfect square is an integer that is the square of another integer. The square root of a perfect square is an integer.

Ex: The first few perfect squares are:

$$1, 4, 9, 16, 25, 36, 49, 64, 81, 100, \dots$$

Their square roots are:

$$\sqrt{1} = 1$$
, $\sqrt{4} = 2$, $\sqrt{9} = 3$, $\sqrt{16} = 4$, ...

B CALCULATING SQUARE ROOTS

While the square roots of perfect squares are easy to find, most numbers are not perfect squares. We can estimate their square roots or use a calculator for a more precise value.

Method Use a calculator -

On most calculators, you can find a square root using the $\sqrt{}$ button.

Ex: Use a calculator to find $\sqrt{10}$, rounded to 2 decimal places.

Answer: Entering $\sqrt{10}$ into a calculator gives approximately 3.162277... Rounded to 2 decimal places, $\sqrt{10} \approx 3.16$.