SOLVING QUADRATIC EQUATIONS

A QUADRATIC EQUATION

A.1 IDENTIFYING COEFFICIENTS OF QUADRATIC EQUATIONS: LEVEL 1

Ex 1: For the equation $5x^2 - 2x - 3 = 0$, find the coefficients in the form $ax^2 + bx + c = 0$:

$$a = \boxed{5}, b = \boxed{-2}$$
 and $c = \boxed{-3}$

Answer:

$$5x^2 - 2x$$
 $-3 = 0$

$$5x^2 + (-2)x + (-3) = 0$$

We identify

$$a = 5, \quad b = -2, \quad c = -3$$

Ex 2: For the equation $x^2 + 2x + 1 = 0$, find the coefficients in the form $ax^2 + bx + c = 0$:

$$a = \boxed{1}, b = \boxed{2}$$
 and $c = \boxed{1}$

Answer:

$$x^2 + 2x + 1 = 0$$

$$1x^2 + 2x + 1 = 0$$

We identify

$$a = 1, \quad b = 2, \quad c = 1$$

Ex 3: For the equation $-x^2 + 2 = 0$, find the coefficients in the form $ax^2 + bx + c = 0$:

$$a = \boxed{-1}, b = \boxed{0}$$
 and $c = \boxed{2}$

Answer:

$$-x^2 +2 = 0$$

$$(-1)x^2 + 0x + 2 = 0$$

We identify

$$a = -1, \quad b = 0, \quad c = 2$$

Ex 4: For the equation $-x^2 + 2x = 0$, find the coefficients in the form $ax^2 + bx + c = 0$:

$$a = \boxed{-1}, b = \boxed{2}$$
 and $c = \boxed{0}$

Answer: Write the equation in the form $ax^2 + bx + c = 0$:

$$-x^2 + 2x = 0$$

$$-x^2 + 2x + 0 = 0$$

We identify:

$$a = -1, \quad b = 2, \quad c = 0$$

A.2 IDENTIFYING COEFFICIENTS OF QUADRATIC EQUATIONS: LEVEL 2

Ex 5: For the equation $x^2 - x + 3 = 1$, find the coefficients in the form $ax^2 + bx + c = 0$:

$$a = \boxed{1}$$
, $b = \boxed{-1}$ and $c = \boxed{2}$

Answer: First, rewrite the equation in the form $ax^2 + bx + c = 0$:

$$x^2 - x + 3 = 1$$

$$x^2 - x + 3 - 1 = 0$$

$$x^2 - x + 2 = 0$$

We identify:

$$a = 1, \quad b = -1, \quad c = 2$$

Ex 6: For the equation $(x+1)^2 = 0$, find the coefficients in the form $ax^2 + bx + c = 0$:

$$a = \boxed{1}, b = \boxed{2}$$
 and $c = \boxed{1}$

Answer: First, expand the equation and write it in the form $ax^2 + bx + c = 0$:

$$(x+1)^2 = 0$$

$$x^2 + 2x + 1 = 0$$

We identify:

$$a = 1, \quad b = 2, \quad c = 1$$

Ex 7: For the equation $(x-2)^2 + 2 = 0$, find the coefficients in the form $ax^2 + bx + c = 0$:

$$a = \boxed{1}$$
, $b = \boxed{-4}$ and $c = \boxed{6}$

Answer: First, expand the equation and write it in the form $ax^2 + bx + c = 0$:

$$(x-2)^2 + 2 = 0$$

$$x^2 - 4x + 4 + 2 = 0$$

$$x^2 - 4x + 6 = 0$$

We identify:

$$a = 1, \quad b = -4, \quad c = 6$$

Ex 8: For the equation x(x-2) = 0, find the coefficients in the form $ax^2 + bx + c = 0$:

$$a = \boxed{1}, b = \boxed{-2}$$
 and $c = \boxed{0}$

Answer: Expand and write in the form $ax^2 + bx + c = 0$:

$$x(x-2) = 0$$

$$x^2 - 2x = 0$$

We identify:

$$a = 1, \quad b = -2, \quad c = 0$$

Ex 9: For the equation (x-2)(x+1)=0, find the coefficients in the form $ax^2+bx+c=0$:

$$a = \boxed{1}$$
, $b = \boxed{-1}$ and $c = \boxed{-2}$

Answer: Expand and write in the form $ax^2 + bx + c = 0$:

$$(x-2)(x+1) = 0$$

$$x^2 + x - 2x - 2 = 0$$

$$x^2 - x - 2 = 0$$

We identify:

$$a = 1, \quad b = -1, \quad c = -2$$

A.3 RECOGNIZING QUADRATIC EQUATIONS

MCQ 10: Is the equation $2x^2-3x+2=0$ a quadratic equation?

 \boxtimes Yes.

 \square No.

Answer: The equation $2x^2 - 3x + 2 = 0$ is a quadratic equation because it has the form $ax^2 + bx + c = 0$, where a = 2, b = -3, and c = 2, with a non-zero x^2 term.

The correct choice is: Yes.

MCQ 11: Is the equation 2x - 3 = 0 a quadratic equation?

 \square Yes.

⊠ No.

Answer: The equation 2x - 3 = 0 is not a quadratic equation because it lacks an x^2 term; it is a linear equation of the form ax + b = 0.

The correct choice is: No.

MCQ 12: Is the equation $2x^2 - 3x + \frac{1}{x} = 0$ a quadratic equation?

 \square Yes.

⊠ No.

Answer: The equation $2x^2 - 3x + \frac{1}{x} = 0$ is not a quadratic equation because it contains a term $\frac{1}{x}$, which makes it a rational equation rather than a polynomial equation of the form $ax^2 + bx + c = 0$. The correct choice is: No.

MCQ 13: Is the equation (x-1)(x+2) = 0 a quadratic equation?

 \boxtimes Yes.

 \square No.

Answer: The equation (x-1)(x+2) = 0 is a quadratic equation because, when expanded, it becomes $x^2 + x - 2 = 0$, which is in the form $ax^2 + bx + c = 0$ with a = 1, b = 1, and c = -2, and contains a non-zero x^2 term.

The correct choice is: Yes.

A.4 VERIFYING ROOTS OF QUADRATIC EQUATIONS

MCQ 14: Is 1 a root of the equation $x^2 - 2x + 1 = 0$?

⊠ Yes.

 \square No.

Answer: Substitute x=1 into the equation: $1^2-2(1)+1=1-2+1=0$. Since it equals zero, 1 is a root.

The correct choice is: Yes.

MCQ 15: Is 1 a root of the equation $x^2 + 2x + 1 = 0$?

 \square Yes.

⊠ No.

Answer: Substitute x=1 into the equation: $1^2+2(1)+1=1+2+1=4\neq 0$. Since it does not equal zero, 1 is not a root. The correct choice is: No.

MCQ 16: Is 2 a root of the equation (x-1)(x-2) = 0?

 \boxtimes Yes.

 \square No.

Answer: Substitute x=2 into the equation: $(2-1)(2-2)=1\cdot 0=0$. Since the product equals zero, 2 is a root.

The correct choice is: Yes.

MCQ 17: Is 5 a root of the equation $(x-2)^2 - 8 = 0$?

 \square Yes.

⊠ No.

Answer: Substitute x = 5 into the equation: $(5-2)^2 - 8 = 3^2 - 8 = 9 - 8 = 1 \neq 0$. Since the result is not zero, 5 is not a root. The correct choice is: No.

B SOLVING BY FACTORIZATION

B.1 FINDING SOLUTION SETS OF FACTORED QUADRATIC EQUATIONS

MCQ 18: For the equation (x-1)(x+2) = 0, the set of solutions is

 $\boxtimes S = \{-2, 1\}$

 $\Box S = \{-1, 2\}$

 $\square S = \{2\}$

 $\square S = \{1\}$

Answer:

$$(x-1)(x+2) = 0$$

 $x-1=0$ or $x+2=0$ (null factor law)
 $x=1$ or $x=-2$ (solve each equation)

The set of solutions is $\{-2,1\}$.

MCQ 19: For the equation $x(x-\sqrt{2})=0$, the set of solutions is

 $\Box S = \{0, -\sqrt{2}\}\$

 $\square S = \{-\sqrt{2}\}\$

 $\square S = \{0\}$

 $\boxtimes S = \{0, \sqrt{2}\}\$

Answer:

$$x(x-\sqrt{2})=0$$

$$x=0 \quad \text{or} \quad x-\sqrt{2}=0 \quad \text{(null factor law)}$$

$$x=0 \quad \text{or} \quad x=\sqrt{2} \qquad \text{(solve each equation)}$$

The set of solutions is $\{0, \sqrt{2}\}.$

MCQ 20: For the equation $(x-1)^2 = 0$, the set of solutions is

 $\boxtimes S = \{1\}$

 $\square S = \{-1\}$

 $\square S = \{1, -1\}$

 $\square S = \{0\}$

Answer:

$$(x-1)^2 = 0$$

$$(x-1)(x-1) = 0$$

$$x-1 = 0 mtext{ or } x-1 = 0 mtext{ (null factor law)}$$

$$x = 1 mtext{ (solve the equation)}$$

Since $(x-1)^2 = 0$ has a double root, the set of solutions is $\{1\}$.

MCQ 21: For the equation (2x-1)(x+1)=0, the set of solutions is

$$\Box S = \{-1, 2\}$$

$$\boxtimes S = \left\{ \frac{1}{2}, -1 \right\}$$

$$\square S = \{2\}$$

$$\square S = \{-1\}$$

Answer:

$$(2x-1)(x+1)=0$$

 $2x-1=0$ or $x+1=0$ (null factor law)
 $2x=1$ or $x=-1$ (solve each equation)
 $x=\frac{1}{2}$ or $x=-1$

The set of solutions is $\{\frac{1}{2}, -1\}$.

B.2 SOLVING FACTORED QUADRATIC EQUATIONS

Ex 22: Solve the equation (x-1)(x+2) = 0. Justify your answer.

Answer:

$$(x-1)(x+2) = 0$$

 $x-1=0$ or $x+2=0$ (null factor law)
 $x=1$ or $x=-2$

The solutions are 1 and -2.

Ex 23: Solve the equation (x+1)(x-1) = 0. Justify your answer.

Answer:

$$(x+1)(x-1) = 0$$

 $x+1=0$ or $x-1=0$ (null factor law)
 $x=-1$ or $x=1$

The solutions are -1 and 1.

Ex 24: Solve the equation ((x-2)+3)((x-2)-3)=0. Justify your answer.

Answer:

$$((x-2)+3)((x-2)-3)=0$$

 $x-2+3=0$ or $x-2-3=0$ (null factor law)
 $x+1=0$ or $x-5=0$
 $x=-1$ or $x=5$

The solutions are -1 and 5.

Ex 25: Solve the equation $(x + \sqrt{2})(x - \sqrt{2}) = 0$. Justify your answer.

Answer:

$$(x+\sqrt{2})(x-\sqrt{2})=0$$

 $x+\sqrt{2}=0$ or $x-\sqrt{2}=0$ (null factor law)
 $x=-\sqrt{2}$ or $x=\sqrt{2}$

The solutions are $x = -\sqrt{2}$ and $x = \sqrt{2}$.

C FACTORIZATION TECHNIQUES FOR SPECIAL FORMS OF EQUATIONS

C.1 FINDING SOLUTION SETS OF QUADRATIC EQUATIONS IN THE FORM ax^2+bx

MCQ 26: For the equation $x^2 + x = 0$, the set of solutions is

$$\Box S = \{-1, 0, 1\}$$

$$\square \ S = \{1\}$$

$$\square S = \{0\}$$

$$\boxtimes S = \{0, -1\}$$

Answer:

$$x^2 + x = 0$$

 $x(x+1) = 0$ (factorize)
 $x = 0$ or $x + 1 = 0$ (null factor law)
 $x = 0$ or $x = -1$ (solve each equation)

The set of solutions is $\{-1,0\}$.

MCQ 27: For the equation $x^2 - 2x = 0$, the set of solutions is

$$\Box S = \{-2, 0\}$$

$$\square S = \{2\}$$

$$\square S = \{0\}$$

$$\boxtimes S = \{0, 2\}$$

Answer:

$$x^2 - 2x = 0$$

 $x(x-2) = 0$ (factorize)
 $x = 0$ or $x - 2 = 0$ (null factor law)
 $x = 0$ or $x = 2$ (solve each equation)

The set of solutions is $\{0, 2\}$.

MCQ 28: For the equation $2x^2 + x = 0$, the set of solutions is

$$\boxtimes S = \left\{-\frac{1}{2}, 0\right\}$$

$$\Box S = \{-2, 0\}$$

$$\Box S = \{2, 0\}$$

$$\Box S = \{0, 1\}$$

Answer:

$$2x^{2} + x = 0$$

$$x(2x + 1) = 0$$
 (factorize)
$$x = 0 \text{ or } 2x + 1 = 0 \text{ (null factor law)}$$

$$x = 0 \text{ or } 2x = -1$$

$$x = 0 \text{ or } x = -\frac{1}{2} \text{ (solve each equation)}$$

The set of solutions is $S = \left\{0, -\frac{1}{2}\right\}$.

MCQ 29: For the equation $3x^2 = x$, the set of solutions is

$$\Box S = \{-3, 0\}$$

$$\boxtimes S = \left\{0, \frac{1}{3}\right\}$$

$$\Box S = \{0, 3\}$$

$$\Box S = \{0, 1\}$$

Answer:

$$3x^2 = x$$

$$3x^2 - x = 0$$

$$x(3x - 1) = 0$$
 (factorize)
$$x = 0 \text{ or } 3x - 1 = 0$$
 (null factor law)
$$x = 0 \text{ or } 3x = 1$$

$$x = 0 \text{ or } x = \frac{1}{3}$$
 (solve each equation)

The set of solutions is $S = \left\{0, \frac{1}{3}\right\}$.

C.2 SOLVING QUADRATIC EQUATIONS IN THE FORM $ax^2 + bx$

Ex 30: Solve the equation $x^2 + x = 0$. Justify your answer.

Answer:

$$x^2 + x = 0$$

 $x(x+1) = 0$ (factorize)
 $x = 0$ or $x + 1 = 0$ (null factor law)
 $x = 0$ or $x = -1$ (solve each equation)

The set of solutions is $\{-1,0\}$.

Ex 31: Solve the equation $x^2 - 2x = 0$. Justify your answer.

Answer:

$$x^2 - 2x = 0$$

 $x(x-2) = 0$ (factorize)
 $x = 0$ or $x - 2 = 0$ (null factor law)
 $x = 0$ or $x = 2$ (solve each equation)

The set of solutions is $\{0, 2\}$.

Ex 32: Solve the equation $2x^2 - x = 0$. Justify your answer.

Answer:

$$2x^2 - x = 0$$

$$x(2x - 1) = 0$$
 (factorize)
$$x = 0 \text{ or } 2x - 1 = 0 \text{ (null factor law)}$$

$$x = 0 \text{ or } 2x = 1 \text{ (solve each equation)}$$

$$x = 0 \text{ or } x = \frac{1}{2}$$

The set of solutions is $\left\{0, \frac{1}{2}\right\}$.

Ex 33: Solve the equation $2x^2 = 4x$. Justify your answer.

Answer:

$$2x^2 = 4x$$

 $2x^2 - 4x = 0$ (put all terms on one side)
 $2x(x-2) = 0$ (factorize)
 $2x = 0$ or $x-2=0$ (null factor law)
 $x = 0$ or $x = 2$ (solve each equation)

The set of solutions is $\{0, 2\}$.

C.3 FINDING SOLUTION SETS OF QUADRATIC EQUATIONS IN THE FORM OF A DIFFERENCE OF SQUARES

MCQ 34: For the equation $x^2 - 4 = 0$, the set of solutions is

$$\Box S = \{-4, 4\}$$

$$\square \ S = \{2\}$$

$$\Box S = \{-1, 1\}$$

$$\boxtimes S = \{-2, 2\}$$

Answer:

• Method 1

$$x^{2} - 4 = 0$$

$$x^{2} - 2^{2} = 0$$

$$(x - 2)(x + 2) = 0$$
 (difference of squares)
$$x - 2 = 0 \quad \text{or} \quad x + 2 = 0 \quad \text{(null factor law)}$$

$$x = 2 \quad \text{or} \quad x = -2 \quad \text{(solve each equation)}$$

• Method 2

$$x^{2} - 4 = 0$$

$$x^{2} = 4$$

$$x = \sqrt{4} \quad \text{or} \quad x = -\sqrt{4}$$

$$x = 2 \quad \text{or} \quad x = -2$$

The set of solutions is $S = \{-2, 2\}.$

MCQ 35: For the equation $x^2 = -2$, the set of solutions is

$$\Box S = \{-2, 2\}$$

$$\square S = \{2\}$$

$$\boxtimes S = \{\}$$

$$\Box S = \{-\sqrt{2}, \sqrt{2}\}\$$

Answer:

$$x^2 = -2$$

There is **no real solution** since the square of a real number cannot be negative.

The set of solutions is \emptyset .

MCQ 36: For the equation $x^2 - 2 = 0$, the set of solutions is

$$\boxtimes S = \{-\sqrt{2}, \sqrt{2}\}$$

$$\Box S = \{-2, 2\}$$

$$\square S = \{2\}$$

$$\Box S = \{-1, 1\}$$

Answer:

• Method 1

$$x^2 - 2 = 0$$

$$x^2 - \left(\sqrt{2}\right)^2 = 0$$

$$(x - \sqrt{2})(x + \sqrt{2}) = 0$$
 (difference of squares)
$$x - \sqrt{2} = 0 \quad \text{or} \quad x + \sqrt{2} = 0 \quad \text{(null factor law)}$$

$$x = \sqrt{2} \quad \text{or} \quad x = -\sqrt{2} \quad \text{(solve each equation)}$$

• Method 2

$$x^{2} - 2 = 0$$

$$x^{2} = 2$$

$$x = \sqrt{2} \quad \text{or} \quad x = -\sqrt{2}$$

The set of solutions is $S = \{-\sqrt{2}, \sqrt{2}\}.$

MCQ 37: For the equation $(x-1)^2 - 9 = 0$, the set of solutions is

$$\boxtimes S = \{-2, 4\}$$

$$\Box S = \{-3, 3\}$$

$$\Box S = \{2, 4\}$$

$$\Box S = \{-1, 1\}$$

Answer:

• Method 1

$$(x-1)^{2} - 9 = 0$$

$$(x-1)^{2} - 3^{2} = 0$$

$$[(x-1)-3] [(x-1)+3] = 0$$

$$(x-1)-3 = 0 \text{ or } (x-1)+3 = 0$$

$$x-4 = 0 \text{ or } x+2 = 0$$

$$x = 4 \text{ or } x = -2$$

• Method 2

$$(x-1)^2 - 9 = 0$$

 $(x-1)^2 = 9$
 $x-1 = \sqrt{9}$ or $x-1 = -\sqrt{9}$
 $x-1 = 3$ or $x-1 = -3$
 $x = 4$ or $x = -2$

The set of solutions is $S = \{-2, 4\}$.

MCQ 38: For the equation $(x-1)^2 - 2 = 0$, the set of solutions is

$$\boxtimes S = \{1 - \sqrt{2}, 1 + \sqrt{2}\}\$$

$$\Box S = \{-2, 4\}$$

$$\Box S = \{-\sqrt{2}, \sqrt{2}\}$$

$$\Box S = \{-1, 1\}$$

Answer:

• Method 1

$$(x-1)^{2} - 2 = 0$$

$$(x-1)^{2} - (\sqrt{2})^{2} = 0$$

$$[(x-1) - \sqrt{2}][(x-1) + \sqrt{2}] = 0$$

$$x - 1 - \sqrt{2} = 0 \quad \text{or} \quad x - 1 + \sqrt{2} = 0$$

$$x = 1 + \sqrt{2} \quad \text{or} \quad x = 1 - \sqrt{2}$$

• Method 2

$$(x-1)^2 - 2 = 0$$

 $(x-1)^2 = 2$
 $x-1 = \sqrt{2}$ or $x-1 = -\sqrt{2}$
 $x = 1 + \sqrt{2}$ or $x = 1 - \sqrt{2}$

The set of solutions is $S = \{1 - \sqrt{2}, 1 + \sqrt{2}\}.$

C.4 SOLVING QUADRATIC EQUATIONS IN THE FORM OF A DIFFERENCE OF SQUARES

Ex 39: Solve the equation $x^2 - 4 = 0$. Justify your answer.

Answer:

• Method 1

$$x^{2}-4=0$$

$$x^{2}-2^{2}=0$$

$$(x-2)(x+2)=0 \qquad \text{(difference of squares)}$$

$$x-2=0 \quad \text{or} \quad x+2=0 \quad \text{(null factor law)}$$

$$x=2 \quad \text{or} \quad x=-2 \qquad \text{(solve each equation)}$$

• Method 2

$$x^{2} - 4 = 0$$

$$x^{2} = 4$$

$$x = \sqrt{4} \quad \text{or} \quad x = -\sqrt{4}$$

$$x = 2 \quad \text{or} \quad x = -2$$

The set of solutions is $S = \{-2, 2\}.$

Ex 40: Solve the equation $x^2 = -2$. Justify your answer.

Answer.

$$x^2 = -2$$

There is **no real solution** since the square of a real number cannot be negative.

The set of solutions is \emptyset .

Ex 41: Solve the equation $x^2 - 2 = 0$. Justify your answer.

Answer:

• Method 1

$$x^2 - 2 = 0$$

$$x^2 - \left(\sqrt{2}\right)^2 = 0$$

$$(x - \sqrt{2})(x + \sqrt{2}) = 0$$
 (difference of squares)
$$x - \sqrt{2} = 0 \quad \text{or} \quad x + \sqrt{2} = 0 \quad \text{(null factor law)}$$

$$x = \sqrt{2} \quad \text{or} \quad x = -\sqrt{2} \quad \text{(solve each equation)}$$

• Method 2

$$x^{2} - 2 = 0$$

$$x^{2} = 2$$

$$x = \sqrt{2} \quad \text{or} \quad x = -\sqrt{2}$$

The set of solutions is $S = \{-\sqrt{2}, \sqrt{2}\}.$

Ex 42: Solve the equation $(x-1)^2 - 9 = 0$. Justify your answer.

Answer:

• Method 1

$$(x-1)^{2} - 9 = 0$$

$$(x-1)^{2} - 3^{2} = 0$$

$$[(x-1)-3][(x-1)+3] = 0$$

$$(x-1)-3 = 0 \text{ or } (x-1)+3 = 0$$

$$x-4 = 0 \text{ or } x+2 = 0$$

$$x = 4 \text{ or } x = -2$$

• Method 2

$$(x-1)^2 - 9 = 0$$

 $(x-1)^2 = 9$
 $x-1 = \sqrt{9}$ or $x-1 = -\sqrt{9}$
 $x-1 = 3$ or $x-1 = -3$
 $x = 4$ or $x = -2$

The set of solutions is $S = \{-2, 4\}.$

Ex 43: Solve the equation $(x-1)^2 - 2 = 0$. Justify your answer.

Answer:

• Method 1

$$(x-1)^{2} - 2 = 0$$

$$(x-1)^{2} - (\sqrt{2})^{2} = 0$$

$$[(x-1) - \sqrt{2}][(x-1) + \sqrt{2}] = 0$$

$$x - 1 - \sqrt{2} = 0 \quad \text{or} \quad x - 1 + \sqrt{2} = 0$$

$$x = 1 + \sqrt{2} \quad \text{or} \quad x = 1 - \sqrt{2}$$

• Method 2

$$(x-1)^2 - 2 = 0$$

 $(x-1)^2 = 2$
 $x-1 = \sqrt{2}$ or $x-1 = -\sqrt{2}$
 $x = 1 + \sqrt{2}$ or $x = 1 - \sqrt{2}$

The set of solutions is $S = \{1 - \sqrt{2}, 1 + \sqrt{2}\}.$

D THE GENERAL METHOD: COMPLETING THE SQUARE

D.1 FINDING SOLUTION SETS OF QUADRATIC EQUATIONS

MCQ 44: For the equation $x^2 + 2x - 3 = 0$, the set of solutions is

$$\boxtimes S = \{-3, 1\}$$

$$\Box S = \{3, 1\}$$

$$\Box S = \{-1, 3\}$$

$$\Box S = \{-1, 1\}$$

Answer: We know that $(x+1)^2 = x^2 + 2x + 1$. So

$$x^{2} + 2x - 3 = 0$$

$$x^{2} + 2x + 1 - 4 = 0 (rewrite -3 as 1 - 4)$$

$$(x+1)^{2} - 4 = 0 (complete the square)$$

$$(x+1)^{2} - 2^{2} = 0 (difference of squares)$$

$$[(x+1) - 2][(x+1) + 2] = 0 (factorize)$$

$$(x+1) - 2 = 0 or (x+1) + 2 = 0 (null factor law)$$

$$x = 1 or x = -3 (solve).$$

The set of solutions is $S = \{-3, 1\}$.

MCQ 45: For the equation $x^2 + 6x + 5 = 0$, the set of solutions is

$$\boxtimes S = \{-5, -1\}$$

$$\Box S = \{-5, 1\}$$

$$\Box S = \{-1, 5\}$$

$$\Box S = \{1, 5\}$$

Answer: We know that $(x+3)^2 = x^2 + 6x + 9$. So

$$x^{2} + 6x + 5 = 0$$

$$x^{2} + 6x + 9 - 4 = 0 (rewrite 5 as 9 - 4)$$

$$(x + 3)^{2} - 4 = 0 (complete the square)$$

$$(x + 3)^{2} - 2^{2} = 0 (difference of squares)$$

$$[(x + 3) - 2][(x + 3) + 2] = 0 (factorize)$$

$$(x + 1)(x + 5) = 0 (simplify)$$

$$x + 1 = 0 \text{ or } x + 5 = 0 (null factor law)$$

$$x = -1 \text{ or } x = -5 (solve)$$

The set of solutions is $S = \{-5, -1\}$.

MCQ 46: For the equation $x^2 + 10x + 24 = 0$, the set of solutions is

$$\square S = \{2, 4\}$$

$$\Box S = \{2, 6\}$$

$$\Box S = \{4, 6\}$$

$$\boxtimes S = \{-4, -6\}$$

Answer: We know that $(x + 5)^2 = x^2 + 10x + 25$. So

$$x^{2} + 10x + 24 = 0$$

$$x^{2} + 10x + 25 - 1 = 0 (rewrite 24 as 25 - 1)$$

$$(x + 5)^{2} - 1 = 0 (complete the square)$$

$$(x + 5)^{2} - 1^{2} = 0 (difference of squares)$$

$$[(x + 5) - 1][(x + 5) + 1] = 0 (factorize)$$

$$(x + 5) - 1 = 0 or (x + 5) + 1 = 0 (null factor law)$$

$$x = -4 or x = -6 (solve).$$

MCQ 47: For the equation $x^2 - 2x - 1 = 0$, the set of solutions is

$$\boxtimes S = \left\{1 - \sqrt{2}, 1 + \sqrt{2}\right\}$$

$$\Box S = \{-1, 2\}$$

$$\Box S = \{-1, 1\}$$

$$\Box S = \{0, 2\}$$

Answer: We know that $(x-1)^2 = x^2 - 2x + 1$. So

$$x^{2} - 2x - 1 = 0$$

$$x^{2} - 2x + 1 - 2 = 0 \quad \text{(rewrite } -1 \text{ as } 1 - 2\text{)}$$

$$(x - 1)^{2} - 2 = 0 \quad \text{(complete the square)}$$

$$(x - 1)^{2} - (\sqrt{2})^{2} = 0 \quad \text{(difference of squares)}$$

$$[(x - 1) - \sqrt{2}][(x - 1) + \sqrt{2}] = 0 \quad \text{(factorize)}$$

$$x - 1 - \sqrt{2} = 0 \text{ or } x - 1 + \sqrt{2} = 0 \quad \text{(null factor law)}$$

$$x = 1 + \sqrt{2} \text{ or } x = 1 - \sqrt{2} \quad \text{(solve)}.$$

The set of solutions is $S = \{1 - \sqrt{2}, 1 + \sqrt{2}\}.$

D.2 SOLVING QUADRATIC EQUATIONS

Ex 48: Solve the equation $x^2 + 2x - 3 = 0$. Justify your answer.

Answer: We know that $(x+1)^2 = x^2 + 2x + 1$. So

$$x^{2} + 2x - 3 = 0$$

$$x^{2} + 2x + 1 - 4 = 0 (rewrite -3 as 1 - 4)$$

$$(x + 1)^{2} - 4 = 0 (complete the square)$$

$$(x + 1)^{2} - 2^{2} = 0 (difference of squares)$$

$$[(x + 1) - 2][(x + 1) + 2] = 0 (factorize)$$

$$(x + 1) - 2 = 0 or (x + 1) + 2 = 0 (null factor law)$$

$$x = 1 or x = -3 (solve).$$

The set of solutions is $S = \{-3, 1\}.$

Ex 49: Solve the equation $x^2 + 6x + 5 = 0$. Justify your answer.

Answer: We know that $(x+3)^2 = x^2 + 6x + 9$. So

$$x^{2} + 6x + 5 = 0$$

$$x^{2} + 6x + 9 - 4 = 0 (rewrite 5 as 9 - 4)$$

$$(x + 3)^{2} - 4 = 0 (complete the square)$$

$$(x + 3)^{2} - 2^{2} = 0 (difference of squares)$$

$$[(x + 3) - 2][(x + 3) + 2] = 0 (factorize)$$

$$(x + 1)(x + 5) = 0 (simplify)$$

$$x + 1 = 0 \text{ or } x + 5 = 0 (null factor law)$$

$$x = -1 \text{ or } x = -5 (solve)$$

The set of solutions is $S = \{-5, -1\}$.

Ex 50: Solve the equation $x^2 + 10x + 24 = 0$. Justify your answer.

Answer: We know that $(x + 5)^2 = x^2 + 10x + 25$. So

$$x^{2} + 10x + 24 = 0$$

$$x^{2} + 10x + 25 - 1 = 0 (rewrite 24 as 25 - 1)$$

$$(x + 5)^{2} - 1 = 0 (complete the square)$$

$$(x + 5)^{2} - 1^{2} = 0 (difference of squares)$$

$$[(x + 5) - 1][(x + 5) + 1] = 0 (factorize)$$

$$(x + 5) - 1 = 0 or (x + 5) + 1 = 0 (null factor law)$$

$$x = -4 or x = -6 (solve).$$

Ex 51: Solve the equation $x^2 - 2x - 1 = 0$. Justify your answer.

Answer: We know that $(x-1)^2 = x^2 - 2x + 1$. So

$$x^{2} - 2x - 1 = 0$$

$$x^{2} - 2x + 1 - 2 = 0 \quad \text{(rewrite } -1 \text{ as } 1 - 2\text{)}$$

$$(x - 1)^{2} - 2 = 0 \quad \text{(complete the square)}$$

$$(x - 1)^{2} - (\sqrt{2})^{2} = 0 \quad \text{(difference of squares)}$$

$$[(x - 1) - \sqrt{2}][(x - 1) + \sqrt{2}] = 0 \quad \text{(factorize)}$$

$$x - 1 - \sqrt{2} = 0 \text{ or } x - 1 + \sqrt{2} = 0 \quad \text{(null factor law)}$$

$$x = 1 + \sqrt{2} \text{ or } x = 1 - \sqrt{2} \quad \text{(solve)}.$$

The set of solutions is $S = \{1 - \sqrt{2}, 1 + \sqrt{2}\}.$

E QUADRATIC FORMULA

E.1 CALCULATING THE DISCRIMINANT

Ex 52: For the equation $5x^2 - 2x - 3 = 0$, calculate the discriminant:

$$\Delta = \boxed{64}$$

Answer: Given the quadratic equation $ax^2+bx+c=0$, we identify:

$$a = 5, \quad b = -2, \quad c = -3$$

The discriminant is given by:

$$\Delta = b^{2} - 4ac$$

$$= (-2)^{2} - 4 \times 5 \times (-3)$$

$$= 4 + 60$$

$$= 64$$

Ex 53: For the equation $x^2 + 6x + 5 = 0$, calculate the discriminant:

$$\Delta = \boxed{16}$$

Answer: Given the quadratic equation $ax^2+bx+c=0$, we identify:

$$a = 1, \quad b = 6, \quad c = 5$$

The discriminant is given by:

$$\Delta = b^2 - 4ac$$

$$= 6^2 - 4 \times 1 \times 5$$

$$= 36 - 20$$

$$= 16$$

Ex 54: For the equation $2x^2 - x + 3 = 0$, calculate the discriminant:

$$\Delta = \boxed{-23}$$

Answer: Given the quadratic equation $ax^2+bx+c=0$, we identify:

$$a = 2, \quad b = -1, \quad c = 3$$

The discriminant is given by:

$$\Delta = b^2 - 4ac$$

$$= (-1)^2 - 4 \times 2 \times 3$$

$$= 1 - 24$$

$$= -23$$

Ex 55: For the equation $-2x^2 + 8 = 0$, calculate the discriminant:

$$\Delta = \boxed{64}$$

Answer: Given the quadratic equation $ax^2+bx+c=0$, we identify:

$$a = -2, \quad b = 0, \quad c = 8$$

The discriminant is given by:

$$\Delta = b^2 - 4ac$$

$$= 0^2 - 4 \times (-2) \times 8$$

$$= 0 + 64$$

$$= 64$$

E.2 SOLVING QUADRATIC EQUATIONS: STEP BY STEP

Ex 56: Consider the quadratic equation $x^2 + 2x - 3 = 0$.

1. Find the discriminant.

$$\Delta = \boxed{16}$$

- 2. Hence, state the nature of the roots of the equation. As $\Delta > 0$, there are 2 distinct roots.
- 3. The solutions of the equation are $\boxed{-3}$ and $\boxed{1}$ (order from lowest to highest).

Answer: $x^2 + 2x - 3 = 0$ has a = 1, b = 2, c = -3.

- 1. $\Delta = b^2 4ac$ = $(2)^2 - 4(1)(-3)$ = 4 + 12= 16
- 2. As $\Delta > 0$, there are 2 distinct roots.
- 3. $x = \frac{-b \sqrt{\Delta}}{2a} \quad \text{or } x = \frac{-b + \sqrt{\Delta}}{2a}$ $x = \frac{-2 \sqrt{16}}{2 \cdot 1} \quad \text{or } x = \frac{-2 + \sqrt{16}}{2 \cdot 1}$ $x = \frac{-2 4}{2} \quad \text{or } x = \frac{-2 + 4}{2}$ $x = -3 \quad \text{or } x = 1$

Ex 57: Consider the quadratic equation $x^2 - 2x - 1 = 0$.

1. Find the discriminant.

$$\Delta = \boxed{8}$$

- 2. Hence, state the nature of the roots of the equation. As $\Delta > 0$, there are 2 distinct roots.
- 3. The solutions of the equation are $1-\sqrt{2}$ and $1+\sqrt{2}$ (order from lowest to highest).

Answer: $x^2 - 2x - 1 = 0$ has a = 1, b = -2, c = -1.

- 1. $\Delta = b^2 4ac$ = $(-2)^2 - 4(1)(-1)$ = 4 + 4= 8
- 2. As $\Delta > 0$, there are 2 distinct roots.

3.
$$x = \frac{-b - \sqrt{\Delta}}{2a}$$
 or $x = \frac{-b + \sqrt{\Delta}}{2a}$
 $x = \frac{-(-2) - \sqrt{8}}{2 \cdot 1}$ or $x = \frac{-(-2) + \sqrt{8}}{2 \cdot 1}$
 $x = \frac{2 - \sqrt{4 \cdot 2}}{2}$ or $x = \frac{2 + \sqrt{4 \cdot 2}}{2}$
 $x = \frac{2 - 2\sqrt{2}}{2}$ or $x = \frac{2 + 2\sqrt{2}}{2}$
 $x = 1 - \sqrt{2}$ or $x = 1 + \sqrt{2}$

Ex 58: Consider the quadratic equation $2x^2 - 3x + 1 = 0$.

1. Find the discriminant.

$$\Delta = \boxed{1}$$

- 2. Hence, state the nature of the roots of the equation. As $\Delta > 0$, there are 2 distinct roots.
- 3. The solutions of the equation are $\boxed{\frac{1}{2}}$ and $\boxed{1}$ (order from lowest to highest).

Answer: $2x^2 - 3x + 1 = 0$ has a = 2, b = -3, c = 1.

- 1. $\Delta = b^2 4ac$ = $(-3)^2 - 4(2)(1)$ = 9 - 8= 1
- 2. As $\Delta > 0$, there are 2 distinct roots.
- 3. $x = \frac{-b \sqrt{\Delta}}{2a}$ or $x = \frac{-b + \sqrt{\Delta}}{2a}$ $x = \frac{-(-3) - \sqrt{1}}{2 \cdot 2}$ or $x = \frac{-(-3) + \sqrt{1}}{2 \cdot 2}$ $x = \frac{3 - 1}{4}$ or $x = \frac{3 + 1}{4}$ $x = \frac{2}{4}$ or $x = \frac{4}{4}$ $x = \frac{1}{2}$ or x = 1

Ex 59: Consider the quadratic equation $2x^2 - 4x + 2 = 0$.

1. Find the discriminant.

$$\Delta = \boxed{0}$$

- 2. Hence, state the nature of the roots of the equation. As $\Delta=0$, there is 1 double root.
- 3. The solution of the equation is 1.

Answer: $2x^2 - 4x + 2 = 0$ has a = 2, b = -4, c = 2.

- 1. $\Delta = b^2 4ac$ = $(-4)^2 - 4(2)(2)$ = 16 - 16= 0
- 2. As $\Delta = 0$, there is 1 double root.
- 3. $x = \frac{-b \pm \sqrt{\Delta}}{2a}$ $x = \frac{-(-4) \pm \sqrt{0}}{2 \cdot 2}$ $x = \frac{4}{4}$ x = 1

E.3 SOLVING QUADRATIC EQUATIONS

Ex 60: Solve the quadratic equation $x^2 + 2x - 3 = 0$.

Answer: $x^2 + 2x - 3 = 0$ has a = 1, b = 2, c = -3.

1.
$$\Delta = b^2 - 4ac$$

= $(2)^2 - 4(1)(-3)$
= $4 + 12$
= 16

2. As $\Delta > 0$, there are 2 distinct roots.

3.
$$x = \frac{-b - \sqrt{\Delta}}{2a} \quad \text{or } x = \frac{-b + \sqrt{\Delta}}{2a}$$
$$x = \frac{-2 - \sqrt{16}}{2 \cdot 1} \quad \text{or } x = \frac{-2 + \sqrt{16}}{2 \cdot 1}$$
$$x = \frac{-2 - 4}{2} \quad \text{or } x = \frac{-2 + 4}{2}$$
$$x = -3 \quad \text{or } x = 1$$

Ex 61: Solve the quadratic equation $x^2 + 2x - 2 = 0$.

Answer: $x^2 + 2x - 2 = 0$ has a = 1, b = 2, c = -2.

1.
$$\Delta = b^2 - 4ac$$

= $(2)^2 - 4(1)(-2)$
= $4 + 8$
= 12

2. As $\Delta > 0$, there are 2 distinct roots.

3.
$$x = \frac{-b - \sqrt{\Delta}}{2a}$$
 or $x = \frac{-b + \sqrt{\Delta}}{2a}$
 $x = \frac{-2 - \sqrt{12}}{2 \cdot 1}$ or $x = \frac{-2 + \sqrt{12}}{2 \cdot 1}$
 $x = \frac{-2 - 2\sqrt{3}}{2}$ or $x = \frac{-2 + 2\sqrt{3}}{2}$
 $x = -1 - \sqrt{3}$ or $x = -1 + \sqrt{3}$

Ex 62: Solve the quadratic equation $x^2 - 2x + 6 = 0$.

Answer: $x^2 - 2x + 6 = 0$ has a = 1, b = -2, c = 6.

1.
$$\Delta = b^2 - 4ac$$

= $(-2)^2 - 4(1)(6)$
= $4 - 24$
= -20

- 2. As $\Delta < 0$, there are no real roots.
- 3. No real solutions.

Ex 63: Solve the quadratic equation $x^2 - 6x + 9 = 0$.

Answer: $x^2 - 6x + 9 = 0$ has a = 1, b = -6, c = 9.

1.
$$\Delta = b^2 - 4ac$$

= $(-6)^2 - 4(1)(9)$
= $36 - 36$
= 0

2. As $\Delta = 0$, there is 1 double root.

3.
$$x = \frac{-b}{2a}$$
$$x = \frac{-(-6)}{2 \cdot 1}$$
$$x = \frac{6}{2}$$
$$x = 3$$

E.4 SOLVING QUADRATIC EQUATIONS

Ex 64: Solve the quadratic equation $2x^2 - 5x + 2 = 0$.

Answer: $2x^2 - 5x + 2 = 0$ has a = 2, b = -5, c = 2.

1.
$$\Delta = b^2 - 4ac$$

= $(-5)^2 - 4 \times 2 \times 2$
= $25 - 16$
= 9

2. As $\Delta > 0$, there are 2 distinct roots.

3.
$$x = \frac{-b - \sqrt{\Delta}}{2a} \qquad \text{or } x = \frac{-b + \sqrt{\Delta}}{2a}$$
$$x = \frac{-(-5) - \sqrt{9}}{2 \times 2} \qquad \text{or } x = \frac{-(-5) + \sqrt{9}}{2 \times 2}$$
$$x = \frac{5 - 3}{4} \qquad \text{or } x = \frac{5 + 3}{4}$$
$$x = \frac{2}{4} \qquad \text{or } x = \frac{8}{4}$$
$$x = \frac{1}{2} \qquad \text{or } x = 2$$

Ex 65: Solve the quadratic equation $x^2 + 2x - 2 = 0$.

Answer: $x^2 + 2x - 2 = 0$ has a = 1, b = 2, c = -2.

1.
$$\Delta = b^2 - 4ac$$

= $(2)^2 - 4 \times 1 \times (-2)$
= $4 + 8$
= 12

2. As $\Delta > 0$, there are 2 distinct roots.

3.
$$x = \frac{-b - \sqrt{\Delta}}{2a}$$
 or $x = \frac{-b + \sqrt{\Delta}}{2a}$
 $x = \frac{-2 - \sqrt{12}}{2 \times 1}$ or $x = \frac{-2 + \sqrt{12}}{2 \times 1}$
 $x = \frac{-2 - 2\sqrt{3}}{2}$ or $x = \frac{-2 + 2\sqrt{3}}{2}$
 $x = -1 - \sqrt{3}$ or $x = -1 + \sqrt{3}$

Ex 66: Solve the quadratic equation $x^2 - 8x + 15 = 0$.

Answer: $x^2 - 8x + 15 = 0$ has a = 1, b = -8, c = 15.

1.
$$\Delta = b^2 - 4ac$$

= $(-8)^2 - 4 \times 1 \times 15$
= $64 - 60$
= 4

2. As $\Delta > 0$, there are 2 distinct roots.

3.
$$x = \frac{-b - \sqrt{\Delta}}{2a} \qquad \text{or } x = \frac{-b + \sqrt{\Delta}}{2a}$$
$$x = \frac{-(-8) - \sqrt{4}}{2 \times 1} \qquad \text{or } x = \frac{-(-8) + \sqrt{4}}{2 \times 1}$$
$$x = \frac{8 - 2}{2} \qquad \text{or } x = \frac{8 + 2}{2}$$
$$x = \frac{6}{2} \qquad \text{or } x = \frac{10}{2}$$
$$x = 3 \qquad \text{or } x = 5$$

Ex 67: Solve the quadratic equation $x^2 + 6x + 5 = 0$.

Answer: $x^2 + 6x + 5 = 0$ has a = 1, b = 6, c = 5.

1.
$$\Delta = b^2 - 4ac$$

= $(6)^2 - 4 \times 1 \times 5$
= $36 - 20$
= 16

2. As $\Delta > 0$, there are 2 distinct roots.

3.
$$x = \frac{-b - \sqrt{\Delta}}{2a}$$
 or $x = \frac{-b + \sqrt{\Delta}}{2a}$
 $x = \frac{-6 - \sqrt{16}}{2 \times 1}$ or $x = \frac{-6 + \sqrt{16}}{2 \times 1}$
 $x = \frac{-6 - 4}{2}$ or $x = \frac{-6 + 4}{2}$
 $x = \frac{-10}{2}$ or $x = \frac{-2}{2}$
 $x = -5$ or $x = -1$