SOLVING INEQUALITIES

A INEQUALITIES

A.1 RECOGNIZING INEQUALITIES

MCQ 1: Is 2x - 3 = 0 an inequality?

 \square Yes.

⊠ No.

Answer: No, 2x - 3 = 0 is not an inequality. It is an equation, because it uses the equals sign "=" and asks for which value(s) of x the expression is equal to 0.

An inequality would use signs like "<", ">", " \leq ", or " \geq " to compare expressions rather than asking for equality.

MCQ 2: Is 5x + 1 > 0 an inequality?

 \boxtimes Yes.

 \square No.

Answer: Yes, 5x + 1 > 0 is an inequality because it uses the "greater than" sign (>) and asks for which values of x the expression 5x + 1 is strictly greater than 0.

MCQ 3: Is $x-4 \le 2$ an inequality?

 \boxtimes Yes.

 \square No.

Answer: Yes, $x-4 \le 2$ is an inequality because it uses the "less than or equal to" sign (\le) and describes the set of values of x for which x-4 is less than or equal to 2.

MCQ 4: Is 3x + 2 = 7 an inequality?

 \square Yes.

 \boxtimes No.

Answer: No, 3x + 2 = 7 is not an inequality. It is an equation, because it uses the equals sign "=" and asks for the value of x that makes the two sides equal.

B PROPERTIES OF INEQUALITIES

B.1 FINDING THE SOLUTION SET OF INEQUALITIES

MCQ 5: For $2x - 6 \ge 0$, the set of solutions is:

 $\boxtimes [3, +\infty)$

 $\Box (-\infty, 6]$

 \square $(-\infty,3]$

 \Box $[6,+\infty)$

Answer:

$$2x - 6 \ge 0$$
$$2x \ge 6 \pmod{6}$$
$$x \ge 3 \pmod{6}$$

The set of solutions is $[3, +\infty)$, which includes all numbers greater than or equal to 3.

MCQ 6: For $3x - 5 \le 10$, the set of solutions is:

 $\Box \left[\frac{5}{3}, +\infty\right)$

 \Box $(-\infty,3]$

 $\boxtimes (-\infty, 5]$

 \Box $[5,+\infty)$

Answer:

$$3x - 5 \le 10$$
$$3x \le 15 \pmod{5}$$
$$x \le 5 \pmod{\text{divide by 3}}$$

The set of solutions is $(-\infty, 5]$, which includes all numbers less than or equal to 5.

MCQ 7: For $-2x + 3 \ge 5$, the set of solutions is:

 \Box $(-\infty,1]$

 \Box $[1,+\infty)$

 $\boxtimes (-\infty, -1]$

 $\Box [-1,+\infty)$

Answer:

$$-2x + 3 \ge 5$$

 $-2x \ge 2$ (subtract 3)
 $x < -1$ (divide by -2 , reverse the inequality)

The set of solutions is $(-\infty, -1]$, which includes all numbers less than or equal to -1.

MCQ 8: For 3x - 2 < 4, the set of solutions is:

 $\Box (-\infty, 2]$

 \square $[2,+\infty)$

 $\boxtimes (-\infty, 2)$

 \square $(2,+\infty)$

Answer:

$$3x - 2 < 4$$
$$3x < 6 \pmod{2}$$
$$x < 2 \pmod{\text{divide by 3}}$$

The set of solutions is $(-\infty, 2)$, which includes all numbers less than 2 (but not 2 itself).

B.2 SOLVING INEQUALITIES: LEVEL 1

Ex 9: Solve $2x - 6 \ge 0$. Justify your answer.

Answer:

$$2x - 6 \ge 0$$

 $2x \ge 6$ (add 6 to both sides)
 $x > 3$ (divide by 2)

The set of solutions is $[3, +\infty)$, which includes all numbers greater than or equal to 3.

Ex 10: Solve 4x + 2 > 6. Justify your answer.

Answer:

$$4x + 2 > 6$$

 $4x > 4$ (subtract 2 from both sides)
 $x > 1$ (divide by 4)

The set of solutions is $(1, +\infty)$, which includes all numbers greater than 1.

Ex 11: Solve $5 - 3x \le 2$. Justify your answer.

Answer:

$$5-3x \le 2$$

 $-3x \le -3$ (subtract 5 from both sides)
 $x \ge 1$ (divide by -3 and reverse inequality)

The set of solutions is $[1, +\infty)$, which includes all numbers greater than or equal to 1.

Ex 12: Solve -x + 4 < 7. Justify your answer.

Answer:

$$-x + 4 < 7$$

 $-x < 3$ (subtract 4 from both sides)
 $x > -3$ (multiply by -1 and reverse inequality)

The set of solutions is $(-3, +\infty)$, which includes all numbers greater than -3.

B.3 SOLVING INEQUALITIES: LEVEL 2

Ex 13: Solve 2x - 2 > 4x + 1. Justify your answer.

Answer:

$$\begin{array}{ll} 2x-2>4x+1\\ -2x>3 & \text{(subtract 4x from both sides and add 2)}\\ & x<-\frac{3}{2} & \text{(divide by -2 and reverse inequality)} \end{array}$$

The set of solutions is $\left(-\infty, -\frac{3}{2}\right)$, which includes all numbers less than $-\frac{3}{2}$.

Ex 14: Solve $3(2x-1) \le 5x+4$. Justify your answer.

Answer:

$$3(2x-1) \le 5x+4$$

 $6x-3 \le 5x+4$ (distribute 3)
 $x \le 7$ (subtract 5x from both sides and add 3)

The set of solutions is $(-\infty, 7]$, which includes all numbers less than or equal to 7.

Ex 15: Solve -4x + 7 < 2x - 3. Justify your answer.

Answer:

$$-4x+7<2x-3$$

$$-6x<-10 \qquad \text{(subtract 2x from both sides and subtract 7)}$$

$$x>\frac{5}{3} \qquad \text{(divide by -6 and reverse inequality)}$$

The set of solutions is $(\frac{5}{3}, +\infty)$, which includes all numbers greater than $\frac{5}{3}$.

Ex 16: Solve $5 - 2(x+1) \ge 3x$. Justify your answer.

Answer:

$$5 - 2(x + 1) \ge 3x$$

$$5 - 2x - 2 \ge 3x \quad \text{(distribute -2)}$$

$$3 - 2x \ge 3x \quad \text{(combine like terms)}$$

$$3 \ge 5x \quad \text{(add 2x to both sides)}$$

$$\frac{3}{5} \ge x \quad \text{(divide by 5)}$$

The set of solutions is $\left(-\infty, \frac{3}{5}\right]$, which includes all numbers less than or equal to $\frac{3}{5}$.

C SOLVING NON-LINEAR INEQUALITIES USING A SIGN TABLE

C.1 COMPLETING TABLES OF SIGNS FOR LINEAR EXPRESSIONS

Ex 17: Complete the table of signs for the expression x-2.

x	$-\infty$	$+\infty$
x-2		

Answer:

$$x-2>0$$

 $x>2$ (add 2 to both sides)

• So x-2 is positive (+) for x>2 and x-2 is negative (-) for x<2, and zero at x=2.

	x	$-\infty$		2		$+\infty$
•	x-2		_	0	+	

Ex 18: Complete the table of signs for the expression 3 - x.

x	$-\infty$	$+\infty$
3-x		

Answer:

$$3-x>0$$

 $-x>-3$ (subtract 3)
 $x<3$ (multiply by -1 and reverse the inequality)

• So 3-x is positive (+) for x < 3, zero at x = 3, and negative (-) for x > 3.

	x	$-\infty$		3		$+\infty$
•	3-x		+	0	-	

Ex 19: Complete the table of signs for the expression 2x - 4.

x	$-\infty$	+∞
2x-4		

Answer:

•

$$2x - 4 > 0$$

 $2x > 4$ (add 4 to both sides)
 $x > 2$ (divide by 2)

• So 2x - 4 is positive (+) for x > 2, zero at x = 2, and negative (-) for x < 2.

x	$-\infty$		2		$+\infty$
2x - 4		_	0	+	

Ex 20: Complete the table of signs for the expression 1-2x.

x	$-\infty$	+∞
1-2x		

Answer:

•

$$1-2x>0$$

 $-2x>-1$ (subtract 1)
 $x<\frac{-1}{-2}$ (divide by -2, reverse the inequality)
 $x<\frac{1}{2}$

• So 1-2x is positive (+) for $x<\frac{1}{2}$, zero at $x=\frac{1}{2}$, and negative (-) for $x>\frac{1}{2}$.

x	$-\infty$		$\frac{1}{2}$		$+\infty$
1-2x		+	0	_	

C.2 READING TABLE OF SIGNS

Ex 21:

x	$-\infty$		0		2		$+\infty$
x		_	0	+		+	
(x-2)		_		_	0	+	
x(x-2)		+	0	_	0	+	

For
$$x = -1$$
, the sign of $x(x - 2)$ is $\boxed{+}$

Answer: By reading the table of signs, since $-1 \in (-\infty, 0)$, the sign of x(x-2) is positive.

Checking directly: $(-1)((-1)-2)=(-1)\times(-3)=3>0$.

Ex 22:

x	$-\infty$		-2		2		$+\infty$
4-2x		+		+	0	_	
2+x		_	0	+		+	
(4-2x)(2+x)		_	0	+	0	_	

For x = 3, the sign of (4 - 2x)(2 + x) is $\boxed{-}$.

Answer: By reading the table of signs, since $3 \in (2, +\infty)$, the sign of (4-2x)(2+x) is negative.

Checking directly: $(4-2\times3)\times(2+3) = (4-6)\times5 = (-2)\times5 = -10 < 0$.

Ex 23:

x	$-\infty$		1		2		$+\infty$
(x-2)		_		_	0	+	
(x-1)		_	0	+		+	
(x-2)(x-1)		+	0	_	0	+	

For $x = \frac{3}{2}$, the sign of (x-2)(x-1) is $\boxed{-}$.

Answer: By reading the table of signs, since $\frac{3}{2} \in (1,2)$, the sign of (x-2)(x-1) is negative.

Checking directly: $(\frac{3}{2} - 2) \times (\frac{3}{2} - 1) = (-\frac{1}{2}) \times (\frac{1}{2}) = -\frac{1}{4} < 0$.

Ex 24:

x	$-\infty$		-1		$\frac{1}{2}$		$+\infty$
1-2x		+		+	0	_	
-1 - x		+	0	_		_	
(1-2x)(-1-x)		+	0	_	0	+	

For x = 0, the sign of (1 - 2x)(-1 - x) is $\boxed{-}$.

Answer: By reading the table of signs, since $0 \in (-1, \frac{1}{2})$, the sign of (1-2x)(-1-x) is negative.

Checking directly: $(1-2\times 0)\times (-1-0)=(1)\times (-1)=-1<0$.

C.3 IDENTIFYING THE SIGN TABLE FOR EXPRESSIONS

MCQ 25: Choose the correct table of signs for the expression (x-2)(x-1).

x	$-\infty$		1		2		$+\infty$
(x-2)		+		+	0	_	
(x-1)		_	0	+		+	
(x-2)(x-1)		_	0	+	0	_	

x	$-\infty$		1		2		$+\infty$
(x-2)		_		_	0	+	
(x - 1)		_	0	+		+	
(x-2)(x-1)		+	0	_	0	+	

x	$-\infty$		-2		-1		$+\infty$
(x-2)		_		+	0	+	
(x-1)		_	0	_		+	
(x-2)(x-1)		+	0	_	0	+	

Answer:

- $(x-2) \geqslant 0$ for $x \geqslant 2$
- $(x-1) \geqslant 0$ for $x \geqslant 1$
- The sign of the product (x-2)(x-1) is determined by multiplying the signs of the two factors in each interval.

x	$-\infty$		1		2		$+\infty$
(x-2)		_		_	0	+	
(x-1)		_	0	+		+	
(x-2)(x-1)		+	0	_	0	+	

MCQ 26: Choose the correct table of signs for the expression (3-x)(x+1).

x	$-\infty$		-1		3		$+\infty$
(3-x)		+		+	0	_	
(x+1)		_	0	+		+	
(3-x)(x+1)		_	0	+	0	_	

x	$-\infty$		-1		3		$+\infty$
(3-x)		_		_	0	+	
(x+1)		_	0	+		+	
(3-x)(x+1)		+	0	_	0	+	

x	$-\infty$		-1		3		$+\infty$
(3-x)		+		+	0	_	
(x + 1)		+	0	_		_	
(3-x)(x+1)		+	0	_	0	+	

Answer:

- $(3-x) \geqslant 0$ for $x \leqslant 3$
- $(x+1) \ge 0$ for $x \ge -1$
- The sign of the product (3 x)(x + 1) is determined by multiplying the signs of the two factors in each interval.

x	$-\infty$		-1		3		$+\infty$
(3-x)		+		+	0	_	
(x+1)		_	0	+		+	
(3-x)(x+1)		_	0	+	0	_	

MCQ 27: Choose the correct table of signs for the expression (2-x)(-2-x).

	x	$-\infty$		-2		2		$+\infty$
	(2-x)		+	:	+	0		
	(-2-x)		+	0				
.	(2-x)(-2-x)		+	0	_	0	+	

	x	$-\infty$		-2		2		$+\infty$
	(2-x)		_		_	0	+	
	(-2-x)		_	0	_		+	
]	(2-x)(-2-x)		+	0	_	0	+	

x	$-\infty$		-2		2		$+\infty$
(2-x)		+		+	0	_	
(-2-x)		+	0	_		+	
(2-x)(-2-x)		_	0	+	0	_	

Answer:

- $(2-x) \geqslant 0$ for $x \leqslant 2$
- $(-2-x) \geqslant 0$ for $x \leqslant -2$
- The sign of the product (2-x)(-2-x) is determined by multiplying the signs of the two factors in each interval.

x	$-\infty$		-2		2		$+\infty$
(2-x)		+		+	0	_	
(-2-x)		+	0	_		_	
(2-x)(-2-x)		+	0	_	0	+	

MCQ 28: Choose the correct table of signs for the expression (2x-1)(x+3).

x	$-\infty$		-3		$\frac{1}{2}$		$+\infty$
(2x - 1)		_		+	0	+	
(x+3)		_	0	_		+	
(2x-1)(x+3)		+	0	_	0	+	

x	$-\infty$		-3		$\frac{1}{2}$		$+\infty$
(2x - 1)		_		_	0	+	
(x+3)		_	0	+		+	
(2x-1)(x+3)		+	0	_	0	+	

x	$-\infty$		-3		$\frac{1}{2}$		$+\infty$
(2x - 1)		+		_	0	_	
(x+3)		_	0	+		+	
(2x-1)(x+3)		+	0	_	0	+	

Answer:

- $(2x-1) \geqslant 0$ for $x \geqslant \frac{1}{2}$
- $(x+3) \geqslant 0$ for $x \geqslant -3$
- The sign of the product (2x-1)(x+3) is determined by multiplying the signs of the two factors in each interval.

x	$-\infty$		-3		$\frac{1}{2}$		$+\infty$
(2x-1)		_		_	0	+	
(x+3)		_	0	+		+	
(2x-1)(x+3)		+	0	_	0	+	

C.4 COMPLETING TABLES OF SIGNS FOR FACTORIZED QUADRATIC EXPRESSIONS

Ex 29: Complete the table of signs for the expression (x-2)(x-1).

x	$-\infty$ $+\infty$
(x-2)	
(x-1)	
(x-2)(x-1)	

Answer:

- $(x-2) \geqslant 0$ for $x \geqslant 2$
- $(x-1) \geqslant 0$ for $x \geqslant 1$
- The sign of the product (x-2)(x-1) is determined by multiplying the signs of the two factors in each interval.

x	$-\infty$		1		2		$+\infty$
(x-2)		_		_	0	+	
(x-1)		_	0	+		+	
(x-2)(x-1)		+	0	_	0	+	

Ex 30: Complete the table of signs for the expression x(1-x).

x	$-\infty$ $+\infty$
x	
(1-x)	
x(1-x)	

- $(1-x) \geqslant 0$ for $x \leqslant 1$
- The sign of the product x(1-x) is determined by multiplying the signs of the two factors in each interval.

x	$-\infty$		0		1		$+\infty$
x		_	0	+		+	
(1-x)		+		+	0	_	
x(1-x)		_	0	+	0	_	

Ex 31: Complete the table of signs for the expression (2-x)(3-x).

x	$-\infty$ $+\infty$
(2-x)	
(3-x)	
(2-x)(3-x)	

Answer:

- $(2-x) \geqslant 0$ for $x \leqslant 2$
- $(3-x) \geqslant 0$ for $x \leqslant 3$
- The sign of the product (2-x)(3-x) is determined by multiplying the signs of the two factors in each interval.

x	$-\infty$		2		3		$+\infty$
(2-x)		+	0	_		_	
(3-x)		+		+	0	_	
(2-x)(3-x)		+	0	_	0	+	

Ex 32: Complete the table of signs for the expression (2-x)(2+x).

x	$-\infty$ $+\infty$
(2-x)	
(2+x)	
(2-x)(2+x)	

Answer:

- $(2-x) \geqslant 0$ for $x \leqslant 2$
- $(2+x) \geqslant 0$ for $x \geqslant -2$
- The sign of the product (2-x)(2+x) is determined by multiplying the signs of the two factors in each interval.

x	$-\infty$		-2		2		$+\infty$
(2-x)		+		+	0	_	
(2+x)		_	0	+		+	
(2-x)(2+x)		_	0	+	0	_	