SIMILAR TRIANGLES ### A ANGLE-ANGLE SIMILARITY #### A.1 CHOOSING MATHEMATICAL ARGUMENTATION MCQ 1: Choose the correct mathematical argumentation for why the figures F and F' are similar. - \square The triangles look the same. - \square Both figures are right triangles with a common marked angle, so the triangles F and F' are similar. - \square Both figures are right triangles, so the triangles F and F' are similar. - \square Both triangles have the same marked angle, so the triangles F and F' are similar. MCQ 2: Choose the correct mathematical argumentation for why the figures F and F' are similar. - \square The triangles look the same. - \square Both figures are right triangles with a common marked angle, so the triangles F and F' are similar. - \square Both triangles have the same marked angle, so the triangles F and F' are similar. - \square Both triangles have two marked angles in common, so the triangles F and F' are similar. MCQ 3: Choose the correct mathematical argumentation for why the figures F and F' are similar. - \square The triangles look the same. - \square Both triangles have a common marked angle and a pair of vertically opposite angles, so the triangles F and F' are similar. - \square Both triangles have the same marked angle, so the triangles F and F' are similar. - \square Both figures have a pair of vertically opposite angles, so the triangles F and F' are similar. MCQ 4: Choose the correct mathematical argumentation for why the figures F and F' are similar. - \square The triangles look the same. - \square Both triangles have a common marked angle and a pair of vertically opposite angles, so the triangles F and F' are similar. - \square Since the lines are parallel, the corresponding angles in the two triangles are equal. So, the triangles F and F' are similar. - \square Both figures have a pair of vertically opposite angles, so the triangles F and F' are similar. #### A.2 WRITING MATHEMATICAL ARGUMENTATION $C_{\overline{F}}^{\mathbf{Ex}}$ 5: Justify with mathematical argumentation why the figures $F_{\overline{F}}$ and $F_{\overline{F}}$ are similar. **Ex 6:** Justify with mathematical argumentation why the figures F and F' are similar. www.commeunjeu.com 2 Find x. ## **B THALES'S THEOREM** # B.1 APPLYING THALES'S THEOREM WITHOUT JUSTIFICATION Ex 13: The lines \overrightarrow{GH} and \overrightarrow{EI} intersect at F, and the lines \overrightarrow{GE} and \overrightarrow{HI} are parallel. Given FG = 3 cm, FH = 5 cm, FI = 7 cm, and HI = 9 cm: Calculate the lengths FE and EG. $$FE =$$ cm and $EG =$ cm. Ex 14: The lines \overrightarrow{GH} and \overrightarrow{EI} intersect at F, and the lines \overrightarrow{GE} and \overrightarrow{HI} are parallel. Given FG = 3.5 cm, FE = 4.2 cm, EG = 1.5 cm, and HI = 7.5 cm: Calculate the lengths FI and FH. Ex 15: A folding stool is modeled geometrically with segments \overline{CB} and \overline{AD} for the metal frame and segment \overline{CD} for the fabric seat. Given CG = DG = 30 cm, AG = BG = 45 cm, and AB = 51 cm, and knowing that the seat \overrightarrow{CD} is parallel to the ground represented by \overrightarrow{AB} : Determine the length of the seat CD. $$CD = \boxed{}$$ cm Ex 16: The lines \overrightarrow{JK} and \overrightarrow{LM} intersect at N, and the lines \overrightarrow{JL} and \overrightarrow{KM} are parallel. Given JN=3 cm, NK=5 cm, LM=7 cm, and KM=9 cm: Calculate the lengths NL and LJ. $$NL =$$ cm and $LJ =$ cm ## **B.2 APPLYING THALES'S THEOREM** Ex 17: The lines \overleftrightarrow{GH} and \overleftrightarrow{EI} intersect at F, and the lines \overleftrightarrow{GE} and \overrightarrow{HI} are parallel. Given FG=3 cm, FH=5 cm, FI=7 cm, and HI=9 cm: Calculate the lengths FE and EG. Justify. 3 Calculate the lengths NL and LJ. Justify. Ex 18: The lines \overleftrightarrow{GH} and \overleftrightarrow{EI} intersect at F, and the lines \overleftrightarrow{GE} and \overleftrightarrow{HI} are parallel. Given FG=3.5 cm, FE=4.2 cm, EG=1.5 cm, and HI=7.5 cm: Calculate the lengths FI and FH. Justify. Ex 20: A folding stool is modeled geometrically with segments \overline{CB} and \overline{AD} for the metal frame and segment \overline{CD} for the fabric seat. Given CG = DG = 30 cm, AG = BG = 45 cm, and AB = 51 cm, and knowing that the seat \overline{CD} is parallel to the ground represented by \overline{AB} : Calculate the length of the seat CD. Justify. Ex 19: The lines \overrightarrow{JK} and \overrightarrow{LM} intersect at N, and the lines \overrightarrow{JL} and \overrightarrow{KM} are parallel. Given JN=3 cm, NK=5 cm, LM=7 cm, and KM=9 cm: