SEQUENCES

A NUMERICAL SEQUENCE

In mathematics, a sequence is more than just a pattern; it's an ordered list of numbers where each number has a specific position (its place in the list). To work with sequences effectively, we use a special notation to distinguish a term's position from its value.

Definition Numerical Sequence

A numerical sequence is an ordered list of numbers, called terms. We use the notation u_n to describe a term in the sequence.

- The subscript n is the **index**, which tells us the **position** of the term (often starting from n = 0). The index n usually takes integer values: 0, 1, 2, ...
- u_n represents the value of the term at that specific position.

So, u_0 is the value of the term at position 0, u_1 is the value at position 1, and so on.

Index (n)	0	1	2	
Term (u_n)	u_0	u_1	u_2	

Ex: Given the sequence defined by the table below, find the value of the term u_4 .

n	0	1	2	3	4	5	
u_n	3	5	7	9	11	13	

Answer: To find u_4 , we look in the table for the column where the index is n = 4. The value in the row below it is 11. Therefore, $u_4 = 11$.

B RECURSIVE DEFINITION

Definition Recursive Definition

A recursive definition of a sequence includes two parts:

- The first term (or initial term), denoted for example by u_0 or u_1 . This is the starting point.
- The recursive rule (or recurrence relation), which is a formula that connects the next term, u_{n+1} , to the current term, u_n , for all appropriate integers n (such as $n \ge 0$ or $n \ge 1$).

Once these two parts are known, every term in the sequence can be calculated step by step.

Ex: A sequence is defined recursively by:

- $u_1 = 5$ (The first term is 5).
- $u_{n+1} = u_n + 3$ (The rule is to add 3 to the previous term, for all integers $n \ge 1$).

Find the first five terms of this sequence.

Answer: Let's build the sequence step-by-step using the recursive definition.

- 1st term: The starting term is given: $u_1 = 5$.
- 2nd term: Use the rule with n = 1. $u_2 = u_1 + 3 = 5 + 3 = 8$.
- 3rd term: Use the rule with n = 2. $u_3 = u_2 + 3 = 8 + 3 = 11$.
- 4th term: Use the rule with n = 3. $u_4 = u_3 + 3 = 11 + 3 = 14$.
- 5th term: Use the rule with n = 4. $u_5 = u_4 + 3 = 14 + 3 = 17$.

$$5 \xrightarrow{+3} 8 \xrightarrow{+3} 11 \xrightarrow{+3} 14 \xrightarrow{+3} 17$$

The first five terms are: 5, 8, 11, 14, 17.

C EXPLICIT DEFINITION

While a recursive rule tells you how to get from one term to the next, it is not very efficient if you want to find a term far into the sequence (like the 100th term), because you would have to calculate all the terms before it.

An alternative and often more powerful way to define a sequence is with an **explicit rule**. An explicit rule is a formula that gives the value of u_n directly when you know the position n in the sequence. You choose n, and the rule gives you u_n immediately.

Definition Explicit Rule -

An explicit rule (or explicit formula) defines the nth term of a sequence, u_n , directly as a function of its position n.

$$u_n = f(n)$$

Note The key advantage is that it allows us to calculate any term in the sequence directly, without first having to find all the previous terms one by one.

Ex: Consider the sequence defined by the explicit formula:

$$u_n = 3n + 2$$

Calculate u_{100} .

Answer: To find the value of u_{100} , we substitute n = 100 into the explicit formula:

$$u_{100} = 3(100) + 2$$

= $300 + 2$
= 302

We did not need to know any of the previous terms in the sequence.

D ARITHMETIC SEQUENCE

An arithmetic sequence is the most common type of sequence that follows a recursive rule. It is defined by a starting term and a constant change between consecutive terms.

Definition Arithmetic Sequence

An arithmetic sequence is a sequence where each term after the first is found by adding a constant value to the previous term. This constant is called the **common difference**, denoted by d.

• Recursive Definition: The rule for finding the next term from the previous one is:

$$u_{n+1} = u_n + d$$

- Explicit Formula: We can also find any term directly using its position, n.
 - If the sequence starts with u_1 :

$$u_n = u_1 + (n-1)d$$

- If the sequence starts with u_0 :

$$u_n = u_0 + nd$$

Ex: An arithmetic sequence has a first term $u_1 = 5$ and a common difference d = 3. Find the first five terms of this sequence.

Answer: The recursive rule is $u_{n+1} = u_n + 3$. We start with $u_1 = 5$ and apply the rule repeatedly.

- $u_1 = 5$ (given)
- $u_2 = u_1 + 3 = 5 + 3 = 8$
- $u_3 = u_2 + 3 = 8 + 3 = 11$
- $u_4 = u_3 + 3 = 11 + 3 = 14$
- $u_5 = u_4 + 3 = 14 + 3 = 17$

The first five terms are: 5, 8, 11, 14, 17.

E GEOMETRIC SEQUENCE

A geometric sequence is another fundamental type of sequence that follows a recursive rule. It is defined by a starting term and a constant multiplicative factor: to get from one term to the next, you always multiply by the same number.

Definition Geometric Sequence

A geometric sequence is a sequence where each term after the first is found by multiplying the previous term by a constant non-zero value. This constant is called the **common ratio**, denoted by r.

• Recursive Definition: The rule for finding the next term from the previous one is:

$$u_{n+1} = r \times u_n$$

- Explicit Formula: We can also find any term directly using its position, n.
 - If the sequence starts with u_1 :

$$u_n = u_1 \times r^{n-1}$$

- If the sequence starts with u_0 :

$$u_n = u_0 \times r^n$$

Ex: A geometric sequence has a first term $u_1 = 2$ and a common ratio r = 2. Find the first five terms of this sequence.

Answer: The recursive rule is $u_{n+1} = u_n \times 2$. We start with $u_1 = 2$ and apply the rule repeatedly.

- $u_1 = \mathbf{2}$ (given)
- $u_2 = 2 \times u_1 = 2 \times 2 = 4$
- $u_3 = 2 \times u_2 = 2 \times 4 = 8$
- $u_4 = 2 \times u_3 = 2 \times 8 = 16$
- $u_5 = 2 \times u_4 = 2 \times 16 = 32$

The first five terms are: 2, 4, 8, 16, 32.

F SERIES

While a sequence is a list of numbers, a **series** is what you get when you add those numbers together. Every sequence has a corresponding series. We are often interested in the **partial sum** of a sequence, which is the sum of a specific number of its terms, starting from the beginning.

Definition Series and Partial Sum -

A series is the sum of the terms in a sequence. The partial sum, denoted S_n , is the sum of the terms of a sequence up to a specific index n.

• If a sequence starts at u_0 , the partial sum S_n is the sum of the first (n+1) terms:

$$S_n = u_0 + u_1 + u_2 + \ldots + u_n = \sum_{i=0}^n u_i$$

• If a sequence starts at u_1 , the partial sum S_n is the sum of the first n terms:

$$S_n = u_1 + u_2 + u_3 + \ldots + u_n = \sum_{i=1}^n u_i$$

G SUM OF AN ARITHMETIC SEQUENCE

Proposition Sum of an Arithmetic Sequence -

The sum of the first terms of an arithmetic sequence is given by the formula:

$$S_n = \text{Number of terms} \times \frac{(\text{First term} + \text{Last term})}{2}$$

• If a sequence starts at u_0 and ends at u_n , there are n+1 terms. The formula is:

$$S_n = \frac{n+1}{2}(u_0 + u_n)$$

• If a sequence starts at u_1 and ends at u_n , there are n terms. The formula is:

$$S_n = \frac{n}{2}(u_1 + u_n)$$

H SUM OF A GEOMETRIC SEQUENCE

Proposition Sum of a Geometric Sequence

The sum of the first terms of a geometric sequence is given by the formula:

$$S_n = \text{First term} \times \frac{1 - (\text{common ratio})^{\text{Number of terms}}}{1 - \text{common ratio}}$$

• If a sequence starts at u_0 and has a common ratio r, the sum of the first n+1 terms is:

$$S_n = u_0 \left(\frac{1 - r^{n+1}}{1 - r} \right)$$

• If a sequence starts at u_1 and has a common ratio r, the sum of the first n terms is:

$$S_n = u_1 \left(\frac{1 - r^n}{1 - r} \right)$$

These formulas are valid for any common ratio $r \neq 1$.

I SUM OF AN INFINITE GEOMETRIC SERIES

We have seen how to calculate the sum of a finite number of terms. But what happens if we continue adding the terms of a geometric sequence forever? This concept, known as an infinite series, does not always yield a finite sum. However, under a specific condition, the sum can **converge** to a single, finite value.

Proposition Convergence of a Geometric Series

An infinite geometric series converges to a finite sum if and only if its common ratio r is between -1 and 1, i.e., |r| < 1.

If the series converges, its sum to infinity, denoted S_{∞} , is given by the formula:

$$S_{\infty} = rac{u_1}{1-r}$$

where u_1 is the first term and |r| < 1. If the sequence starts at u_0 , the formula is:

$$S_{\infty}=rac{u_0}{1-r}$$