SEQUENCES

A NUMERICAL SEQUENCE

A.1 FINDING THE VALUE OF A SPECIFIC TERM (u_n)

Ex 1: Using the table below, find u_4 .

n	1	2	3	4	5	6
u_n	3	5	7	9	11	13

$$u_4 = \boxed{}$$

Ex 2: Using the table below, find u_5 .

n	1	2	3	4	5	6
u_n	2	6	12	20	30	42

$$u_5 =$$

Ex 3: Using the table below, find u_7 .

n	1	2	3	4	5	6	7	8
u_n	4	9	16	25	36	49	64	81

$$u_7 =$$

Ex 4: Using the table below, find u_8 .

n	1	2	3	4	5	6	7	8
u_n	1	3	7	15	31	63	127	255

$$u_8 = \boxed{}$$

B RECURSIVE DEFINITION

B.1 CALCULATING TERMS FROM A RECURSIVE RULE

Ex 5: A sequence is defined recursively by:

- $u_1 = 5$.
- $u_{n+1} = u_n + 3$.

Find the first four terms of this sequence.

- $u_1 =$
- $u_2 =$
- $u_3 =$
- $u_4 =$

Ex 6: A sequence is defined recursively by:

- $u_0 = 1$.
- $u_{n+1} = u_n + \frac{1}{2}$.

Find the first four terms of this sequence (from u_0 to u_3).

•
$$u_0 =$$

- $u_1 =$
- $u_2 = \boxed{}$
- $u_3 =$

Ex 7: A sequence is defined recursively by:

- $u_0 = 0$.
- $u_{n+1} = 2u_n + 1$.

Find the first four terms of this sequence (from u_0 to u_3).

- $u_0 = \boxed{}$
- $u_2 =$
- $u_3 = \boxed{}$

Ex 8: A sequence is defined recursively by:

- $u_0 = 3$.
- $u_{n+1} = -u_n + 1$.

Find the first four terms of this sequence (from u_0 to u_3).

- $u_0 =$
- $u_1 =$
- $u_2 =$
- $u_3 =$

B.2 MODELING REAL SITUATIONS WITH SEQUENCES

Ex 9: A scientist observes a culture of bacteria. Initially (at day 0), there are $u_0 = 5$ bacteria. Each day, the number of bacteria doubles. Let u_n be the number of bacteria at day n.

Part A: Define the Sequence Recursively

- The initial term is $u_0 = \boxed{}$
- The recursive rule is $u_{n+1} = \square \times u_n$.

Part B: Calculate the Terms for the First Five Days

- $u_1 = |$ bacteria
- $u_2 =$ bacteria
- $u_3 =$ bacteria
- $u_4 = |$ bacteria
- $u_5 = |$ bacteria

Ex 10: Let u_n be the number of steps I walk on day n. On day 0, I walk $u_0 = 1000$ steps. Each day, I walk 500 more steps than the previous day.

Part A: Define the Sequence Recursively

	_
• The initial term is $u_0 = $	B.4 MODELING WITH ARITHMETICO-GEOMETRIC SEQUENCES
• The recursive rule is $u_{n+1} = u_n + $	
Part B: Calculate the Number of Steps for the Next Five Days	Ex 16: A company has 200 employees in 2025. Each year, 10% of the employees leave the company, and the company hires
• $u_1 = \boxed{}$ steps	10% of the employees leave the company, and the company hires 30 new employees.
• $u_2 = $ steps	Let (u_n) be the sequence corresponding to the number of employees in the company in $2025 + n$.
• $u_3 = $ steps	1. How many employees will there be in 2026?
• $u_4 = $ steps	
• $u_5 = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	
Ex 11: Let u_n be the amount of money you have at the start of week v_n . At the start of week 0, you have $u_n = 20$ dellars. Each	2. How many employees will there be in 2027?
week n . At the start of week 0, you have $u_0 = 20$ dollars. Each week, you receive an allowance of \$10.	
Part A: Define the Sequence Recursively • The initial term is $u_0 = $	3. For all $n \in \mathbb{N}$, express u_{n+1} in terms of u_n .
• The recursive rule is $u_{n+1} = u_n + \boxed{}$.	$u_{n+1} = \boxed{}$
Part B: Calculate the Amount of Money for the Next Five Weeks	
• $u_1 = $ dollars	Ex 17: A gym has 200 members in 2025. Each year, the number of members increases by 10% through referrals, and the
• $u_2 = $ dollars	gym adds 20 new members from advertising. Let (u_n) be the sequence corresponding to the number of
• $u_3 = $ dollars	members in the gym in $2025 + n$.
• $u_4 = \boxed{}$ dollars	1. How many members will there be in 2026?
• $u_5 = $ dollars	
B.3 IDENTIFYING THE RECURSIVE RULE	2. How many members will there be in 2027?
Ex 12: Given the sequence $(3, 5, 7, 9, 11, 13,)$, starting with index $n = 0$. Find its recursive definition.	
• The initial term is $u_0 = \square$.	3. For all $n \in \mathbb{N}$, express u_{n+1} in terms of u_n .
• The recursive rule is $u_{n+1} = \boxed{}$	$u_{n+1} = \boxed{}$
Ex 13: Given the sequence $(100, 90, 80, 70, 60,)$, starting with index $n = 0$. Find its recursive definition.	C EXPLICIT DEFINITION
• The initial term is $u_0 = \boxed{}$.	C.1. CALCULATING TERMS LIGING AN EXPLICIT
• The recursive rule is $u_{n+1} = \boxed{}$	C.1 CALCULATING TERMS USING AN EXPLICIT FORMULA
Ex 14: Given the sequence $(2, 6, 18, 54, 162,)$, starting with index $n = 0$. Find its recursive definition.	Ex 18: Consider the sequence defined by the explicit
• The initial term is $u_0 = $	formula: $u_n = 3n + 2$. Calculate u_{100} .
• The recursive rule is $u_{n+1} = \boxed{}$	$u_{100} = $
Ex 15: Given the sequence $(8, 4, 2, 1, 0.5,)$, starting with index $n = 0$. Find its recursive definition.	Ex 19: Consider the sequence defined by the explicit
• The initial term is $u_0 = \square$.	Ex 19: Consider the sequence defined by the explicit formula: $u_n = -5n + 100$.

• The recursive rule is $u_{n+1} = [$

Calculate u_{50} .

 $u_{50} =$

Ex 20: Consider the sequence defined by the explicit formula: $u_n = 3 \times 2^n$. Calculate u_{10} .

 $u_{10} =$

Ex 21: Consider the sequence defined by the explicit formula: $u_n = n^2 + 5$. Calculate u_{20} .

 $u_{20} =$

Ex 22: Consider the sequence defined by the explicit formula: $u_n = \frac{n}{4} + 1$. Calculate u_{40} .

 $u_{40} =$

C.2 FINDING THE EXPLICIT FORMULA FROM A PATTERN

Ex 23: For the sequence given in the table below, find the explicit formula for u_n .

n	0	1	2	3	4
u_n	0	3	6	9	12

$$u_n = \boxed{}$$

Ex 24: For the sequence given in the table below, find the explicit formula for u_n .

n	0	1	2	3	4	5			
u_n	1	2	4	8	16	32			
		u_n	=						

Ex 25: For the sequence given in the table below, find the explicit formula for u_n .

n	n 1 2 3 4								
u_n	1	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$				
	ı								

Ex 26: For the sequence given in the table below, find the explicit formula for u_n .

n	0	1	2	3	4
u_n	1	3	5	7	9

Ex 27: For the sequence given in the table below, find the explicit formula for u_n .

n	1	2	3	4	5
u_n	1	4	9	16	25
		$u_n =$			

C.3 FINDING EXPRESSIONS FOR ADJACENT TERMS

Ex 28: Consider the sequence defined by the explicit formula: $u_n = 3n + 2$.

Calculate and simplify u_{n+1} .

 $u_{n+1} = \boxed{}$

Ex 29: Consider the sequence defined by the explicit formula: $u_n = 5n - 2$.

Calculate and simplify u_{n-1} .

$$u_{n-1} = \boxed{}$$

Ex 30: Consider the sequence defined by the explicit formula: $u_n = n^2 + 3n$.

Calculate and simplify u_{n+1} .

$$u_{n+1} =$$

Ex 31: Consider the sequence defined by the explicit formula: $u_n = 10 - 4n$.

Calculate and simplify u_{n-1} .

$$u_{n-1} =$$

D ARITHMETIC SEQUENCE

D.1 STUDYING AN ARITHMETIC SEQUENCE

Ex 32: Consider the sequence $(u_0 = 5, u_1 = 8, u_2 = 11, u_3 = 14, u_4 = 17, ...)$.

- 1. $u_1 u_0 =$
 - $\bullet \ u_2 u_1 = \boxed{}$
 - $u_3 u_2 = \boxed{}$
- 2. Show that the sequence is arithmetic.
 - ☐ The difference between consecutive terms is constant.
 - \Box The ratio of consecutive terms is constant.
 - \Box The terms alternate in sign.
- 3. What is its recursive rule?

$$u_{n+1} = \boxed{}$$

4. What is its explicit rule?

$$u_n = \boxed{}$$

5. Find the 50th term of the sequence.

$$u_{50} =$$

Ex 33: Consider the sequence $(u_0 = 4, u_1 = 9, u_2 = 14, u_3 = 19, ...)$.

$$1. \qquad \bullet \quad u_1 - u_0 = \boxed{}$$

•	u_2	_	u_1	=	
_	210		210	_	

	2.	Show	that	the	sequence	is	arithmeti	c.
--	----	------	------	-----	----------	----	-----------	----

 \square The difference between consecutive terms is constant.

 \square The ratio of consecutive terms is constant.

 \square The terms alternate in sign.

3. What is its recursive rule?

4. What is its explicit rule?

$$u_n = \boxed{}$$

5. Find the 50th term of the sequence.

$$u_{50} =$$

Ex 34: Consider the sequence $(u_0 = 125, u_1 = 115, u_2 = 115)$ $105, u_3 = 95, \ldots$).

- $u_1 u_0 =$

 - $u_2 u_1 =$ $u_3 u_2 =$
- 2. Show that the sequence is arithmetic.

 \square The difference between consecutive terms is constant.

 \square The ratio of consecutive terms is constant.

 \square The terms alternate in sign.

3. What is its recursive rule?

$$u_{n+1} = \boxed{}$$

4. What is its explicit rule?

$$u_n = \boxed{}$$

5. Find the 1000th term of the sequence.

$$u_{1000} = \boxed{}$$

D.2 MODELING REAL SITUATIONS WITH EXPLICIT **FORMULAS**

You have an initial savings of \$30. Each week, you add \$10 to your savings. Let u_n be the total amount of money you have after n weeks.

• Part A: Write the Explicit Formula

The formula for the amount of money after n weeks is:

$$u_n = \boxed{}$$

• Part B: Calculate a Future Value

How much money will you have after 20 weeks?

$$u_{20} =$$

Ex 36: You deposit \$1,500 in a savings account that pays simple interest at a rate of 4% per year. Let u_n be the total amount in the account after n years.

• Part A: Write the Explicit Formula

The interest earned each year is 4% of \$1,500, which is $0.04 \times$ 1500 = 60 dollars.

The formula for the amount after n years is:

$$u_n = \boxed{}$$

• Part B: Calculate a Future Value

What will your account balance be after 20 years?

$$u_{20} = \boxed{}$$
 dollars

Ex 37: You start a stamp collection with 12 stamps. Each month, you add 4 new stamps. Let u_n be the total number of stamps after n months.

• Part A: Write the Explicit Formula

The formula for the number of stamps after n months is:

$$u_n =$$

• Part B: Calculate a Future Value

How many stamps will you have after 15 months?

$$u_{15} = \boxed{}$$
 stamps

THE TERM **NUMBER** IN FINDING ARITHMETIC SEQUENCE

An arithmetic sequence is defined by its initial term Ex 38: $u_0 = 8$ and a common difference d = 4.

Determine the index n for which the term u_n has a value of 56.

$$n =$$

Ex 39: An arithmetic sequence is defined by its first term $u_1 =$ 10 and a common difference d = 5.

Determine the index n for which the term u_n has a value of 105.

$$n =$$

An arithmetic sequence is defined by its first term $u_1 = 50$ and a common difference d = -4.

Determine the index n for which the term u_n has a value of 10.

$$n =$$

Ex 41: An arithmetic sequence is defined by its initial term $u_0 = 1$ and a common difference d = 2.

Determine the index n for which the term u_n has a value of 21.

$$n =$$

D.4 FINDING THE EXPLICIT FORMULA FROM TWO TERMS

Ex 42: An arithmetic sequence is given by two of its terms: $u_2 = 11$ and $u_6 = 31$.

Determine the explicit formula for u_n .

$$u_n = \boxed{}$$

Ex 43: An arithmetic sequence is given by two of its terms: $u_5 = 20$ and $u_{10} = 5$.

Determine the explicit formula for u_n .

$$u_n = \boxed{}$$

Ex 44: An arithmetic sequence is given by two of its terms: $u_3 = 4$ and $u_7 = 6$.

Determine the explicit formula for u_n .

$$u_n = \boxed{}$$

E GEOMETRIC SEQUENCE

E.1 STUDYING A GEOMETRIC SEQUENCE

Ex 45: Consider the sequence $(u_0 = 3, u_1 = 6, u_2 = 12, u_3 = 24, ...)$.

- 1. $u_1 \div u_0 =$

 - $\bullet \ u_3 \div u_2 = \boxed{}$
- 2. Show that the sequence is geometric.
 - ☐ The ratio between consecutive terms is constant.
 - ☐ The difference between consecutive terms is constant.
 - \Box The terms alternate in sign.
 - The terms are all even.
- 3. What is its recursive rule?

4. What is its explicit rule?

$$u_n = \boxed{}$$

5. Find the 10th term of the sequence.

$$u_{10} =$$

Ex 46: Consider the sequence $(u_0 = 1, u_1 = -1, u_2 = 1, u_3 = -1, u_4 = 1, \ldots)$.

- 1. $u_1 \div u_0 =$

- 2. Show that the sequence is geometric.
 - \Box The ratio between consecutive terms is constant.
 - \square The difference between consecutive terms is constant.
 - \square The terms alternate in sign.
 - Every term is positive.
- 3. What is its recursive rule?

$$u_{n+1} = \boxed{}$$

4. What is its explicit rule?

$$u_n = \boxed{}$$

5. Find the 10th term of the sequence.

$$u_{10} =$$

Ex 47: Consider the sequence $(u_0 = 4, u_1 = 2, u_2 = 1, u_3 = 0.5, u_4 = 0.25, \ldots)$.

- $1. \quad \bullet \ u_1 \div u_0 = \boxed{}$
 - $\bullet \ u_2 \div u_1 = \boxed{}$
 - $u_3 \div u_2 =$
- 2. Show that the sequence is geometric.
 - \square The ratio between consecutive terms is constant.
 - \Box The difference between consecutive terms is constant.
 - \square The terms alternate in sign.

The terms are increasing.

3. What is its recursive rule?

$$u_{n+1} = \boxed{}$$

4. What is its explicit rule?

$$u_n = \boxed{}$$

5. Find the 10th term of the sequence.

$$u_{10} =$$

E.2 MODELING REAL SITUATIONS WITH EXPLICIT FORMULAS

Ex 48: A scientist observes a culture of bacteria. Initially (at hour 0), there are $u_0 = 50$ bacteria. Each hour, the number of bacteria doubles. Let u_n be the number of bacteria after n bours.

• Part A: Write the Explicit Formula

The formula for the number of bacteria after n hours is:

$$u_n =$$

• Part B: Calculate a Future Value

How many bacteria will there be after 6 hours?

$$u_6 =$$
 bacteria

Ex 49: You invest \$2,000 in an account with compound interest that grows by 5% each year. Let u_n be the total amount in the account after n years.

• Part A: Write the Explicit Formula

To increase by 5%, we multiply by 1.05. The formula for the amount after n years is:

$$u_n =$$

• Part B: Calculate a Future Value

What will the balance be after 10 years? (Round to two decimal places)

$$u_{10} =$$

Ex 50: A radioactive substance has an initial mass of 1000 grams. Its half-life is one year, meaning it loses half of its mass every year through nuclear decay. Let u_n be the mass of the substance after n years.

• Part A: Write the Explicit Formula

The formula for the mass remaining after n years is:

$$u_n =$$

• Part B: Calculate a Future Value

How much of the substance will remain after 5 years? (Round to two decimal places)

$$u_5 = \boxed{}$$
 grams

E.3 FINDING THE TERM NUMBER IN A GEOMETRIC SEQUENCE

Ex 51: A geometric sequence is defined by its initial term $u_0 = 10$ and a common ratio r = 2.

Determine the index n for which the term u_n has a value of 160.

$$n = \square$$

Ex 52: A geometric sequence is defined by its initial term $u_0 = 1000$ and a common ratio r = 0.5.

Determine the index n for which the term u_n has a value of 125.

$$n =$$

Ex 53: A geometric sequence is defined by its first term $u_1 = 5$ and a common ratio r = 3.

Determine the index n for which the term u_n has a value of 3645.

$$n =$$

E.4 FINDING THE EXPLICIT FORMULA FROM TWO TERMS

Ex 54: A geometric sequence is given by two of its terms: $u_2 = 4$ and $u_6 = 64$. Assuming the common ratio is positive, determine the explicit formula for u_n .

$$u_n = \boxed{}$$

Ex 55: A geometric sequence is given by two of its terms: $u_3 = 20$ and $u_5 = 5$. Assuming the common ratio is positive, determine the explicit formula for u_n .

$$u_n =$$

Ex 56: A geometric sequence is given by two of its terms: $u_2 = 12$ and $u_5 = 96$. Assuming the common ratio is positive, determine the explicit formula for u_n (starting from u_1).

$$u_n =$$

F SERIES

F.1 CALCULATING TERMS AND PARTIAL SUMS

Ex 57: Consider the sequence $(u_n) = (2, 5, 8, 11, ...)$, where the first term is u_0 . Find:

1.
$$u_0 =$$

2.
$$u_1 =$$

3.
$$u_2 =$$

4.
$$S_0 =$$

5.
$$S_1 = \Box$$

6.
$$S_2 = \boxed{}$$

Ex 58: Consider the sequence $(u_n) = (10, 20, 40, 80, ...)$, where the first term is u_1 . Find:

1.
$$u_1 = \Box$$

2.
$$u_2 = \boxed{}$$

3.
$$u_3 = \boxed{}$$

4.
$$S_1 =$$

5.
$$S_2 =$$

6.
$$S_3 =$$

Ex 59: Consider the sequence $(u_n) = (100, 95, 90, 85, \dots)$, where the first term is u_1 . Find:

1.
$$u_1 =$$

- 2. $u_2 = \boxed{}$
- 3. $u_3 =$
- 4. $S_1 =$
- 5. $S_2 =$
- 6. $S_3 =$

Ex 60: Consider the sequence $(u_n) = (64, 16, 4, 1, ...)$, where the first term is u_0 . Find:

- 1. $u_0 =$
- 2. $u_1 =$
- 3. $u_2 = \boxed{}$
- 4. $S_0 =$
- 5. $S_1 = \boxed{}$
- 6. $S_2 =$

F.2 CALCULATING PARTIAL SUMS FROM AN EXPLICIT FORMULA

Ex 61: Consider the sequence (u_n) defined by the explicit formula $u_n = 2n + 1$, starting from n = 1. Calculate the partial sum S_4 .

$$S_4 = \boxed{}$$

Ex 62: Consider the sequence (u_n) defined by the explicit formula $u_n = 2^n$, starting from n = 0. Calculate the partial sum S_4 .

$$S_4 =$$

Ex 63: Consider the sequence (u_n) defined by the explicit formula $u_n = 15 - 10n$, starting from n = 0. Calculate the partial sum S_3 .

$$S_3 = \boxed{}$$

Ex 64: Consider the sequence (u_n) defined by the explicit formula $u_n = n^2$, starting from n = 0. Calculate the partial sum S_3 .

$$S_3 = \boxed{}$$

F.3 EVALUATING SUMS IN SIGMA NOTATION

Ex 65: Calculate the sum:

$$\sum_{i=1}^{7} i = \boxed{}$$

Ex 66: Calculate the sum:

$$\sum_{k=0}^{3} k^2 =$$

Ex 67: Calculate the sum:

$$\sum_{k=1}^{3} \frac{1}{k} = \boxed{$$

Ex 68: Calculate the sum:

$$\sum_{i=0}^{2} 4 \left(\frac{3}{2}\right)^{i} = \boxed{}$$

Ex 69: Calculate the sum:

$$\sum_{i=0}^{3} (2i-1) =$$

G SUM OF AN ARITHMETIC SEQUENCE

G.1 CALCULATING THE SUM OF AN ARITHMETIC SERIES: LEVEL 1

Ex 70: Calculate the sum of the first 7 positive integers.

$$1+2+3+4+5+6+7 =$$

Ex 71: Calculate the sum of the first 7 positive even integers.

$$2+4+6+8+10+12+14 =$$

Ex 72: Calculate the sum of the following arithmetic sequence.

$$11 + 16 + 21 + 26 + 31 + 36 + 41 + 46 + 51 =$$

Ex 73: Calculate the sum of the following arithmetic sequence.

$$60 + 55 + 50 + 45 + 40 + 35 + 30 + 25 + 20 =$$

G.2 CALCULATING THE SUM OF AN ARITHMETIC SERIES: LEVEL 2

Ex 74: Calculate the sum of the first 100 positive integers.

$$1 + 2 + 3 + \dots + 100 =$$

Ex 75: Calculate the sum of the arithmetic sequence:

$$3+6+9+12+\cdots+252 =$$

Ex 76: Calculate the sum of the arithmetic sequence:

$$100 + 90 + 80 + \dots + 10 =$$

Ex 77: Calculate the sum of the arithmetic sequence:

$$5 + 7 + 9 + \cdots + 43 =$$

Ex 78: Calculate the sum of the arithmetic sequence:

$$(-8) + (-4) + 0 + 4 + \dots + 40 =$$

G.3 CALCULATING THE SUM OF AN ARITHMETIC SERIES IN SIGMA NOTATION: LEVEL 1

Ex 79: Calculate the sum:

$$\sum_{i=1}^{7} i = \boxed{}$$

Ex 80: Calculate the sum:

$$\sum_{i=1}^{6} (2i+1) =$$

Ex 81: Calculate the sum:

$$\sum_{i=2}^{4} 3i = \boxed{}$$

Ex 82: Calculate the sum:

$$\sum_{i=1}^{5} (12 - 2i) = \boxed{}$$

G.4 CALCULATING THE SUM OF AN ARITHMETIC SERIES IN SIGMA NOTATION: LEVEL 2

Ex 83: Calculate the sum:

$$\sum_{i=1}^{84} 3i =$$

Ex 84: Calculate the sum:

$$\sum_{i=0}^{20} (100 - 5i) = \boxed{}$$

Ex 85: Calculate the sum:

$$\sum_{i=2}^{24} (5i+2) =$$

G.5 PROVING ARITHMETIC SERIES FORMULAS

Ex 86: Use the formula for the sum of an arithmetic sequence to prove that the sum of the first n positive integers is:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Ex 87: Use the formula for the sum of an arithmetic sequence to prove that the sum of the first n positive even integers is:

$$\sum_{i=1}^{n} 2i = n(n+1)$$

Ex 88: Let (u_n) be an arithmetic sequence with initial term u_0 and common difference d.

Use the formula for the sum of an arithmetic sequence to prove that:

$$\sum_{i=0}^{n} u_i = \frac{(n+1)(2u_0 + nd)}{2}$$

H SUM OF A GEOMETRIC SEQUENCE

H.1 CALCULATING THE SUM OF A GEOMETRIC SERIES: LEVEL 1

Ex 89: Calculate the sum of the following geometric sequence.

$$1 + 2 + 4 + 8 + 16 + 32 =$$

Ex 90: Calculate the sum of the following geometric sequence.

$$S = 6 + 12 + 24 + 48 + 96 + 192 =$$

Ex 91: Calculate the sum of the following geometric sequence.

$$S = 32 + 16 + 8 + 4 + 2 =$$

H.2 CALCULATING THE SUM OF A GEOMETRIC SERIES: LEVEL 2

Ex 92: Calculate the sum of the geometric sequence:

$$1 + 2 + 4 + 8 + \dots + 2048 =$$

Ex 93: Calculate the sum of the geometric sequence:

$$5 + 15 + 45 + \dots + 3645 =$$

Ex 94: Calculate the sum of the geometric sequence:

$$100 + 50 + 25 + \dots + 3.125 =$$

Ex 95: Calculate the sum of the geometric sequence:

$$10 + 20 + 40 + \dots + 1280 =$$

H.3 CALCULATING THE SUM OF A GEOMETRIC **SERIES IN SIGMA NOTATION: LEVEL 1**

Ex 96: Calculate the sum:

$$\sum_{i=0}^{5} 2^i =$$

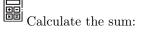
Ex 97: Calculate the sum:

$$\sum_{i=1}^{4} 3 \times (-2)^{i-1} = \boxed{}$$

Ex 98: Calculate the sum:

$$\sum_{i=0}^{3} 32 \left(\frac{1}{2}\right)^i = \boxed{}$$

H.4 CALCULATING THE SUM OF A GEOMETRIC **SERIES IN SIGMA NOTATION: LEVEL 2**



$$\sum_{i=1}^{15} 3 \times 2^{i-1} = \boxed{}$$

Ex 100: Calculate the sum (round to two decimal places):

$$\sum_{i=0}^{10} 100 \times (0.8)^i \approx \boxed{$$

Calculate the sum:

$$\sum_{i=1}^{12} 4 \times (-2)^{i-1} = \boxed{}$$

SUM AN INFINITE **GEOMETRIC SERIES**

I.1 DETERMINING CONVERGENCE OF GEOMETRIC **SERIES**

MCQ 102: Does the following infinite geometric series converge or diverge?

$$S = 2 + 6 + 18 + 54 + \dots$$

- \square Converges
- ☐ Diverges

MCQ 103: Does the following infinite geometric series converge or diverge?

$$S = 100 - 50 + 25 - 12.5 + \dots$$

- \square Converges
- ☐ Diverges

MCQ 104: Does the following infinite geometric series converge or diverge?

$$S = 1 - 2 + 4 - 8 + \dots$$

- ☐ Converges
- ☐ Diverges

MCQ 105: Does the following infinite geometric series converge or diverge?

$$S = 7 + 7 + 7 + 7 + \dots$$

- □ Converges
- ☐ Diverges

CALCULATING THE SUM OF AN INFINITE **GEOMETRIC SERIES**

Ex 106: Find the sum:

$$16 + 8 + 4 + 2 + \dots = \boxed{}$$

Ex 107: Find the sum of the following infinite geometric series:

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = \boxed{}$$

Find the sum of the following infinite geometric Ex 108: series:

$$27 - 9 + 3 - 1 + \frac{1}{3} - \dots = \boxed{}$$