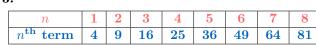

SEQUENCES

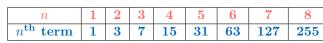
A NUMERICAL SEQUENCE

A.1 FINDING TERM

Ex 1:



Ex 2:


What is the 5^{th} term of this sequence?

What is the 7th term of this sequence?

What is the 8^{th} term of this sequence?

B RECURSIVE DEFINITION

B.1 CALCULATING THE FIRST TERMS

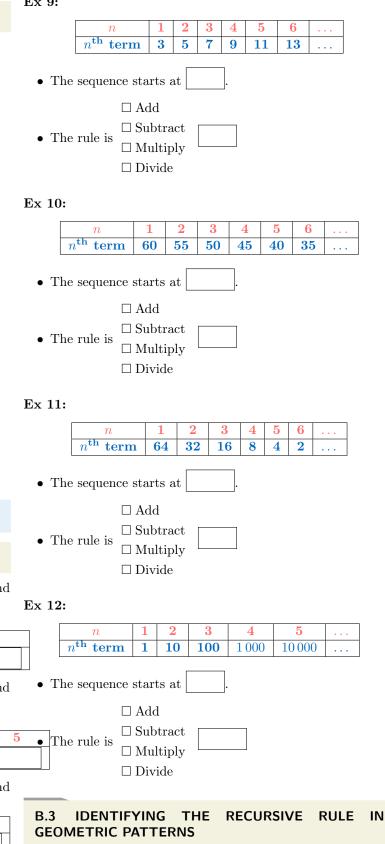
Ex 5: Find the first five terms in the sequence: start at 7 and add 4 each time.

n	1	2	3	4	5
$n^{\mathbf{th}} \mathbf{term}$					

Ex 6: Find the first five terms in the sequence: start at 100 and subtract 15 each time.

	n	1	2	3	4	5.	The rule is \Box Subtract
m	th torm						□ Multiply □
1							□ Divide

Ex 7: Find the first five terms in the sequence: start at 2 and multiply by 2 each time.


n	1	2	3	4	5		
$n^{\mathbf{th}} \mathbf{term}$							

Ex 8: Find the first five terms in the sequence: start at 81 and divide by 3 each time.

n	1		2	3	4	5
$n^{\mathbf{th}} \mathbf{term}$						

B.2 IDENTIFYING THE RECURSIVE RULE

Ex 9:

Ex 13: Observe the following pattern made with sticks:

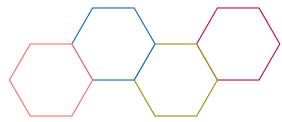
Fill in the table below:

Number of triangles	1	2	3	4
Number of sticks				

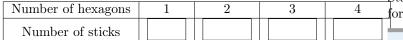
What rule can you find for the number of sticks?

Start with sticks. Add sticks for each new triangle.

Ex 14: Observe the following pattern made with sticks:


Fill in the table below:

Number of squares	1	2	3	4
Number of sticks				


What rule can you find for the number of sticks?

sticks. Add Start with sticks for each new square.

Ex 15: Observe the following pattern made with sticks:

Fill in the table below:

What rule can you find for the number of sticks?

Start with sticks. Add sticks for each new hexagon.

Ex 16: Observe the following pattern made with sticks:

Fill in the table below:

Diagram number	1	2	3	4
Number of sticks				

What rule can you find for the number of sticks?

Start with sticks. Add sticks for the next diagram.

B.4 IDENTIFYING THE RECURSIVE RULE IN DOT PATTERNS

Ex 17: Observe the following pattern made with dots:

What rule can you find for the number of dots?

Start with dot. Multiply by the number of dots for each new box.

Fill in the table below:

Box	1	2	3	4
Number of dots				

Ex 18: Observe the following pattern made with dots:

•	0 0		0000 0000
Box 1	Box 2	Box 3	Box 4

What rule can you find for the number of dots?

Start with dot. Multiply by the number of dots for each new box.

Fill in the table below:

Box	1	2	3	4
Number of dots				

Ex 19: Observe the following dot pattern:

o , o o , ^{o o} , ^{oooo}

Fill in the table below:

Diagram number	1	2		3		4	
Number of dots							

What rule can you find for the number of dots?

Start with dot. Multiply by the number of dots or each new diagram.

C ARITHMETIC SEQUENCE

FINDING IN ARITHMETIC C.1 NEXT TERM SEQUENCE

Ex 20: What is the 6^{th} term of this sequence?

n	1	2	3	4	5	6
$n^{\mathbf{th}} \mathbf{term}$	3	5	7	9	11	

Ex 21: What is the 6^{th} term of this sequence?

n	1	2	3	4	5	6
$n^{\mathbf{th}} \mathbf{term}$	3	8	13	18	23	

Ex 22: What is the 5^{th} term of this sequence?

n	1	2	3	4	5
$n^{\mathbf{th}} \mathbf{term}$	20	18	16	14	

Ex 23: What is the 6^{th} term of this sequence?

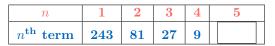
n	1	2	3	4	5	6
$n^{\mathbf{th}} \mathbf{term}$	80	70	60	50	40	

D GEOMETRIC SEQUENCE

D.1 FINDING NEXT TERM IN GEOMETRIC SEQUENCE

Ex 24: What is the 6^{th} term of this sequence?

n	1	2	3	4	5	6
$n^{\mathbf{th}} \mathbf{term}$	2	4	8	16	32	


Ex 25: What is the 5^{th} term of this sequence?

n	1	2	3	4	5
$n^{\mathbf{th}} \mathbf{term}$	1	3	9	27	

Ex 26: What is the 6^{th} term of this sequence?

n	1	2	3	4	5	6
$n^{\mathbf{th}} \mathbf{term}$	64	32	16	8	4	

Ex 27: What is the 5^{th} term of this sequence?

Ex 28: What is the 6^{th} term of this sequence?

n	1	2	3	4	5	6
$n^{\mathbf{th}} \mathbf{term}$	3	6	12	24	48	

(°<u>+</u>°)