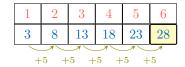

A NUMERICAL SEQUENCE

A.1 FINDING NEXT TERM IN ARITHMETIC SEQUENCE

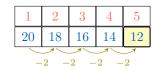
Ex 1: What is the 6th term of this sequence?

n	1	2	3	4	5	6
$n^{\mathbf{th}}$ term	3	5	7	9	11	13


Answer: The 6th term is 13, because each term increases by 2.

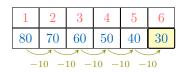
Ex 2: What is the 6^{th} term of this sequence?

n	1	2	3	4	5	6
$n^{\mathbf{th}}$ term	3	8	13	18	23	28


Answer: The 6th term is 28, because each term increases by 5.

Ex 3: What is the 5^{th} term of this sequence?

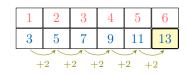
n	1	2	3	4	5
$n^{\mathbf{th}}$ term	20	18	16	14	12


Answer: The 5th term is 12, because each term decreases by 2.

Ex 4: What is the 6^{th} term of this sequence?

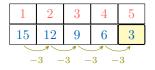
n	1	2	3	4	5	6
$n^{\mathbf{th}}$ term	80	70	60	50	40	30

Answer: The 6th term is 30, because each term decreases by 10.



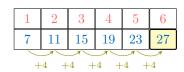
A.2 FINDING A TERM IN ARITHMETIC SEQUENCE

Ex 5: What is the 6^{th} term of this sequence?


n	1	2	3	4	 6	
$n^{\mathbf{th}}$ term	3	5	7	9	 13	

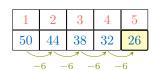
Answer: The 6th term is 13, because each term increases by 2.

Ex 6: What is the 5^{th} term of this sequence?


Answer: The 5th term is 3, because each term decreases by 3.

Ex 7: What is the 6^{th} term of this sequence?

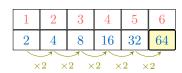
n	1	2	3	 6	n^{th} term


Answer: The 6th term is 27, because each term increases by 4.

Ex 8: What is the 5^{th} term of this sequence?

n	1	2	3	 5	$n^{\mathbf{th}}$ term	50

Answer: The 5th term is 26, because each term decreases by 6.



A.3 FINDING NEXT TERM IN GEOMETRIC SEQUENCE

Ex 9: What is the 6^{th} term of this sequence?

n	1	2	3	4	5	6
$n^{\mathbf{th}}$ term	2	4	8	16	32	64

Answer: The 6th term is 64, because each term is multiplied by 2.

Ex 10: What is the 5^{th} term of this sequence?

n	1	2	3	4	5	
$n^{\mathbf{th}}$ term	1	3	9	27	81	

Answer: The 5th term is 81, because each term is multiplied by 3.

1	2	2 3		5
1	3	9	27	81
×	3 ×	3 ×	3 ×	3

Ex 11: What is the 6^{th} term of this sequence?

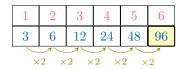
n	1	2	3	4	5	6
$n^{\mathbf{th}}$ term	64	32	16	8	4	2

Answer: The 6th term is 2, because each term is divided by 2.

1	2	3	4	5	6		
64	32	16	8	4	2		
$\div 2 \div 2 \div 2 \div 2$							

Ex 12: What is the 5^{th} term of this sequence?

n	1	2	3	4	5
$n^{\mathbf{th}}$ term	243	81	27	9	3


Answer: The 5th term is 3, because each term is divided by 3.

1	2	3	4	5			
243	81	27	9	3			
÷3 ÷3 ÷3							

Ex 13: What is the 6^{th} term of this sequence?

	\overline{n}	1	2	3	4	5	6
$n^{\mathbf{tl}}$	¹ term	3	6	12	24	48	96

Answer: The 6th term is 96, because each term is multiplied by 2.

A.4 FINDING RULES IN GEOMETRIC PATTERNS

Ex 14: Observe the following pattern made with sticks:

Fill in the table below:

Diagram number	1	2	3	4
Number of sticks	3	5	7	9

What rule can you find for the number of sticks? Start with 3 sticks. Add 2 sticks for the next diagram.

• For diagram number 1, the number of sticks is 3.

• For diagram number 2, the number of sticks is 5.

• For diagram number 3, the number of sticks is 7.

• For diagram number 4, the number of sticks is 9.

• Rule: Start with 3 sticks, and add 2 sticks for the next diagram.

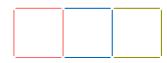
Ex 15: Observe the following pattern made with sticks:

Fill in the table below:

Diagram number	1	2	3	4
Number of sticks	4	7	10	13

What rule can you find for the number of sticks? Start with $\boxed{4}$ sticks. Add $\boxed{3}$ sticks for the next diagram.

Answer:


• For diagram number 1, the number of sticks is 4.

• For diagram number 2, the number of sticks is 7.

• For diagram number 3, the number of sticks is 10.

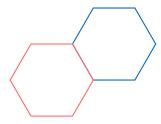
• For diagram number 4, the number of sticks is 13.

• Rule: Start with 4 sticks, and add 3 sticks for the next diagram.

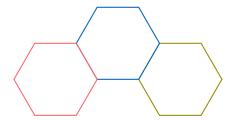
Ex 16: Observe the following pattern made with sticks:

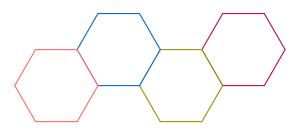
Fill in the table below:

Diagram number	1	2	3	4
Number of sticks	6	11	16	21


What rule can you find for the number of sticks? Start with 6 sticks. Add 5 sticks for the next diagram.

Answer:


• **Diagram 1**: For 1 hexagon, the number of sticks is 6.


• Diagram 2: For 2 hexagons, the number of sticks is 11.

• Diagram 3: For 3 hexagons, the number of sticks is 16.

• Diagram 4: For 4 hexagons, the number of sticks is 21.

• Rule: Start with 6 sticks, and add 5 sticks for each additional hexagon.

A.5 FINDING RULES IN DOT PATTERNS

Ex 17: Observe the following pattern made with dots:

Fill in the table below:

Diagram number	1	2	3	4
Number of dots	1	5	9	13

What rule can you find for the number of dots? Start with $\boxed{1}$ dot. Add $\boxed{4}$ more dots for each new diagram.

Answer:

• For diagram number 1, the number of dots is 1.

• For diagram number 2, the number of dots is 5.

0

• For diagram number 3, the number of dots is 9.

• For diagram number 4, the number of dots is 13.

• Rule: Start with 1 dot, and add 4 dots for each new diagram.

Ex 18: Observe the following pattern made with dots:

。 , 。。。 , 。。。。。 , 。。。。。。

Fill in the table below:

Diagram number	1	2	3	4
Number of dots	1	3	5	7

What rule can you find for the number of dots? Start with $\boxed{1}$ dot. Add $\boxed{2}$ more dots for each new diagram.

Answer:

• For diagram number 1, the number of dots is 1.

0

• For diagram number 2, the number of dots is 3.

0 0 0

• For diagram number 3, the number of dots is 5.

0 0 0 0 0

• For diagram number 4, the number of dots is 7.

0 0 0 0 0 0 0

 Rule: Start with 1 dot, and add 2 dots for each new diagram.