A SQUARE ROOTS

A.1 CALCULATING SQUARE ROOTS OF PERFECT SQUARES

Ex 1: Calculate:

$$\sqrt{4} = \boxed{}$$

Ex 2: Without using a calculator, calculate:

$$\sqrt{36} =$$

Ex 3: Calculate:

$$\sqrt{64} =$$

Ex 4: Calculate:

$$\sqrt{49} =$$

Ex 5: Calculate:

$$\sqrt{100} =$$

Ex 6: Calculate:

$$\sqrt{81} =$$

Ex 7: Calculate:

$$\sqrt{0} =$$

A.2 CALCULATING SQUARE ROOTS OF FRACTIONS

Ex 8: Write in fraction form:

$$\sqrt{\frac{1}{4}} = \boxed{}$$

Ex 9: Write in fraction form:

$$\sqrt{\frac{1}{25}} = \boxed{}$$

Ex 10: Write in fraction form:

$$\sqrt{\frac{1}{9}} =$$

Ex 11: Write in fraction form:

$$\sqrt{\frac{1}{16}} = \boxed{}$$

Ex 12: Write in fraction form:

$$\sqrt{\frac{9}{16}} = \boxed{}$$

Ex 13: Write in fraction form:

$$\sqrt{\frac{4}{9}} =$$

B CALCULATING SQUARE ROOTS

B.1 USING A CALCULATOR

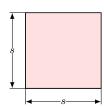
Ex 14: Using a calculator, evaluate $\sqrt{2}$ (round to 2 decimal places).

$$\sqrt{2} \approx$$

Ex 15: Using a calculator, evaluate $\sqrt{10}$ (round to 2 decimal places).

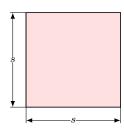
$$\sqrt{10} \approx \boxed{}$$

Ex 16: Using a calculator, evaluate $\sqrt{50}$ (round to 2 decimal places).


$$\sqrt{50} \approx \boxed{}$$

Ex 17: Using a calculator, evaluate $\sqrt{0.5}$ (round to 2 decimal places).

$$\sqrt{0.5} \approx$$


B.2 FINDING THE SIDE LENGTH OF A SQUARE

Ex 18: The area of a square is 2 m^2 . What is the length of the side of the square, s?

 $s \approx$ m (round your answer to 2 decimal places)

Ex 19: The area of a square is 10 m^2 . What is the length of the side of the square, s?

 $s \approx$ m (round your answer to 2 decimal places)

C NTH ROOTS

C.1 CALCULATING CUBE ROOTS OF PERFECT CUBES

$$\sqrt[3]{8} =$$

Ex 21: Without using a calculator, calculate:

$$\sqrt[3]{27} =$$

Ex 22: Calculate:

$$\sqrt[3]{64} =$$

Ex 23: Calculate:

$$\sqrt[3]{125} =$$

Ex 24: Calculate:

$$\sqrt[3]{1000} =$$

Ex 25: Calculate:

$$\sqrt[3]{0} =$$

D LAWS OF RADICALS

D.1 WRITING AS A SINGLE ROOT: LEVEL 1

Ex 26: Write as a single square root:

$$\sqrt{3}\sqrt{4} =$$

Ex 27: Write as a single square root:

$$\sqrt{5}\sqrt{20} =$$

Ex 28: Write as a single square root:

$$\sqrt{6}\sqrt{6} =$$

Ex 29: Write as a single square root:

$$\sqrt{9}\sqrt{4} =$$

 \mathbf{Ex} 30: Write as a single square root:

$$\sqrt{2}\sqrt{8} =$$

D.2 WRITING AS A SINGLE ROOT: LEVEL 2

Ex 31: Write as a single square root:

$$\sqrt{2}\sqrt{3}\sqrt{5} =$$

Ex 32: Write as a single square root:

$$\sqrt{5}\sqrt{2}\sqrt{10} = \boxed{}$$

Ex 33: Write as a single square root:

$$\left(\sqrt{3}\right)^3 =$$

Ex 34: Write as a single square root:

$$\left(\sqrt{2}\right)^3\sqrt{3} = \boxed{}$$

D.3 UNDERSTANDING SQUARE ROOT OPERATIONS

MCQ 35: Is $\sqrt{2} + \sqrt{3} = \sqrt{2+3}$?

☐ True

 \square False

MCQ 36: Is $\sqrt{2}\sqrt{3} = \sqrt{6}$?

☐ True

☐ False

MCQ 37: Is $\sqrt{3} + \sqrt{3} = \sqrt{3+3}$?

 $\hfill\Box$ True

☐ False

MCQ 38: Is $\sqrt{3} + \sqrt{3} = 3$?

 \square True

☐ False

D.4 SIMPLIFYING THE SQUARE ROOT OF A PERFECT SQUARE: LEVEL 1

Ex 39: Simplify:

$$\sqrt{4} =$$

Ex 40: Simplify:

$$\sqrt{36} =$$

Ex 41: Simplify:

$$\sqrt{10^2} =$$

Ex 42: Simplify:

For
$$x \geq 0, \sqrt{x^2} =$$

Ex 43: Simplify:

For
$$x \ge 0, \sqrt{(2x)^2} =$$

D.5 SIMPLIFYING THE SQUARE ROOT OF A PERFECT SQUARE: LEVEL 2

Ex 44: Simplify:

For
$$x \ge 0, \sqrt{9x^2} =$$

Ex 45: Simplify:

$$\sqrt{x^4} =$$

Ex 46: Simplify:

For
$$x \ge 0, \sqrt{4x^2 + x} = \boxed{}$$

Ex 47: Simplify:

$$\sqrt{12}\sqrt{3} =$$

D.6 SIMPLIFYING SQUARE ROOTS

Ex 48: Simplify:

$$\sqrt{18} =$$

Ex 49: Simplify:

$$\sqrt{50} =$$

Ex 50: Simplify:

$$\sqrt{32} =$$

Ex 51: Simplify:

$$\sqrt{20} =$$

D.7 SIMPLIFYING QUOTIENTS OF SQUARE ROOTS

Ex 52: Simplify:

$$\frac{\sqrt{10}}{\sqrt{5}} = \boxed{}$$

Ex 53: Simplify:

$$\frac{\sqrt{75}}{\sqrt{25}} = \boxed{}$$

Ex 54: Simplify:

$$\frac{\sqrt{18}}{\sqrt{3}} = \boxed{}$$

Ex 55: Simplify:

$$\frac{\sqrt{20}}{\sqrt{2}} = \boxed{}$$

E ALGEBRAIC OPERATIONS WITH RADICALS

E.1 ADDING AND SUBTRACTING LIKE RADICALS: LEVEL 1

Ex 56: Simplify:

$$2\sqrt{3} + 5\sqrt{3} = \boxed{}$$

Ex 57: Simplify:

$$4\sqrt{5} + 7\sqrt{5} = \boxed{}$$

Ex 58: Simplify:

$$3\sqrt{6}-\sqrt{6}=\boxed{}$$

Ex 59: Simplify:

$$3\sqrt[3]{7} + 5\sqrt[3]{7} =$$

Ex 60: Simplify:

$$2\sqrt{2} - 4\sqrt{2} =$$

Ex 61: Simplify:

$$2\sqrt{7} - 5\sqrt{7} =$$

E.2 ADDING AND SUBTRACTING LIKE RADICALS: LEVEL 2

Ex 62: Simplify:

$$\sqrt{8} - \sqrt{2} =$$

Ex 63: Simplify:

$$\sqrt{12} + 3\sqrt{3} = \boxed{}$$

Ex 64: Simplify:

$$5\sqrt{3} - \sqrt{12} = \boxed{}$$

Ex 65: Simplify:

$$2\sqrt{7} + 3\sqrt{28} =$$

F RATIONALIZING THE DENOMINATOR

F.1 WRITING WITH AN INTEGER DENOMINATOR: LEVEL $\mathbf{1}$

Ex 66: Simplify:

$$\frac{1}{\sqrt{2}} = \boxed{}$$

$$\frac{2}{\sqrt{2}} = \boxed{}$$

Ex 68: Simplify:

$$\frac{2}{\sqrt{3}} = \boxed{}$$

Ex 69: Simplify:

$$\frac{3}{\sqrt{6}} = \boxed{}$$

F.2 WRITING WITH AN INTEGER DENOMINATOR: LEVEL 2

Ex 70: Simplify:

$$\frac{3}{2\sqrt{3}} = \boxed{ }$$

Ex 71: Simplify:

$$\frac{5}{\sqrt{8}} = \boxed{}$$

Ex 72: Simplify:

$$\frac{4}{3\sqrt{2}} = \boxed{}$$

Ex 73: Simplify:

$$\frac{6}{\sqrt{12}} = \boxed{}$$

F.3 WRITING IN THE FORM $a \pm \sqrt{b}$

Ex 74: Simplify:

$$\frac{1}{1+\sqrt{2}} =$$

Ex 75: Simplify:

$$\frac{1}{\sqrt{2}-1} =$$

Ex 76: Simplify:

$$\frac{4}{1-\sqrt{3}} =$$

Ex 77: Simplify:

$$\frac{5}{\sqrt{3}-2} =$$

F.4 WRITING IN THE FORM $a+b\sqrt{2}$

Ex 78: Simplify:

$$\frac{\sqrt{2}+1}{\sqrt{2}-1} =$$

Ex 79: Simplify:

$$\frac{2}{3-2\sqrt{2}} = \boxed{}$$

Ex 80: Simplify:

$$\frac{3}{\sqrt{2}-1} = \boxed{}$$

Ex 81: Simplify:

$$\frac{4+\sqrt{2}}{2-\sqrt{2}} =$$

F.5 RATIONALIZING ALGEBRAIC DENOMINATORS

Ex 82: For x > 0, rationalize the denominator of the expression:

$$\frac{1}{\sqrt{x}} = \boxed{\phantom{\frac{1}{\sqrt{x}}}}$$

Ex 83: For x > 0, rationalize the denominator of the expression:

$$\frac{x}{\sqrt{x}} = \boxed{\phantom{\frac{x}{\sqrt{x}}}}$$

Ex 84: For x > 0, rationalize the denominator of the expression:

$$\frac{5}{\sqrt{2x}} = \boxed{}$$

Ex 85: For x > 0, simplify the expression by rationalizing the denominator:

$$\frac{x+1}{\sqrt{x}} =$$

F.6 RATIONALIZING BINOMIAL ALGEBRAIC DENOMINATORS

Ex 86: For $x \ge 0$ and $x \ne 1$, rationalize the denominator of the expression:

$$\frac{1}{1+\sqrt{x}} = \boxed{}$$

Ex 87: For $x \ge 0$ and $x \ne 9$, rationalize the denominator of the expression:

$$\frac{x-9}{\sqrt{x}-3} = \boxed{}$$

Ex 88: For $x \ge 0$ and $x \ne 1$, rationalize the denominator of the expression:

$$\frac{\sqrt{x}}{\sqrt{x}+1} = \boxed{}$$

F.7 APPLYING MULTIPLE RADICAL SKILLS

Ex 89: Consider the expression $\sqrt{75} - \sqrt{12}$.

- 1. Show that $\sqrt{75} \sqrt{12} = 3\sqrt{3}$.
- 2. Hence, simplify the expression $\frac{18}{\sqrt{75} \sqrt{12}}$ by rationalizing the denominator.

Ex 90: Consider the expression $\frac{10}{3-\sqrt{7}}$.

- 1. Write down the conjugate of $3 \sqrt{7}$.
- 2. Express $\frac{10}{3-\sqrt{7}}$ in the form $a+b\sqrt{7}$, where $a,b\in\mathbb{Z}$.

Ex 91: Consider the expression $(2 + \sqrt{3})^2$.

- 1. Expand and simplify $(2+\sqrt{3})^2$ into the form $a+b\sqrt{3},$ where $a,b\in\mathbb{Z}.$
- 2. Hence, find the value of $(2 + \sqrt{3})^4$.