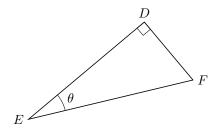
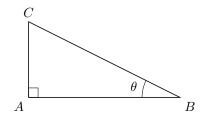

RIGHT-TRIANGLE TRIGONOMETRY

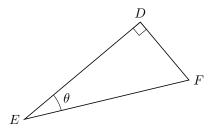
A SIDES OF A RIGHT-ANGLED TRIANGLE


A.1 IDENTIFYING TRIANGLE SIDES

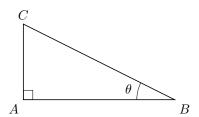
MCQ 1: In the triangle below, identify the adjacent side to the angle θ :


- $\Box \overline{AB}$
- $\Box \overline{AC}$
- $\Box \overline{BC}$

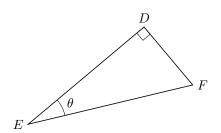
MCQ 2: In the triangle below, identify the hypotenuse relative to the angle θ :


- $\Box \overline{DE}$
- $\Box \overline{DF}$
- $\Box \ \overline{EF}$

MCQ 3: In the triangle below, identify the opposite side to the angle θ :


- $\Box \overline{AB}$
- $\Box \overline{AC}$
- $\Box \ \overline{BC}$

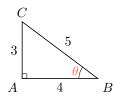
MCQ 4: In the triangle below, identify the opposite side to the angle θ :


- $\Box \overline{DE}$
- $\Box \overline{DF}$
- $\Box \overline{EF}$

MCQ 5: In the triangle below, identify the hypotenuse relative to the angle θ :

- $\Box \overline{AB}$
- $\Box \overline{AC}$
- $\Box \overline{BC}$

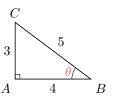
MCQ 6: In the triangle below, identify the adjacent side to the angle θ :



- $\Box \overline{DE}$
- $\Box \overline{DF}$
- $\Box \overline{EF}$

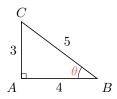
B TRIGONOMETRIC RATIOS

B.1 CALCULATING TRIGONOMETRIC RATIOS


Ex 7:

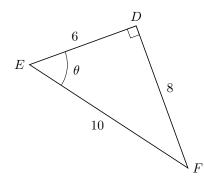
Calculate $\cos(\theta)$.

$$\cos(\theta) =$$


Ex 8:

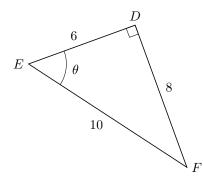
Calculate $\sin(\theta)$.

$$\sin(\theta) = \boxed{}$$


Ex 9:

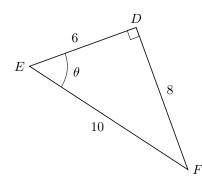
Calculate $tan(\theta)$.

$$\tan(\theta) = \boxed{}$$


Ex 10:

Calculate $\sin(\theta)$.

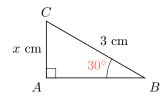
$$\sin(\theta) =$$


Ex 11:

Calculate $tan(\theta)$.

$$\tan(\theta) = \boxed{}$$

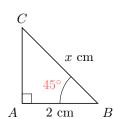
Ex 12:


Calculate $\cos(\theta)$.

$$\cos(\theta) =$$

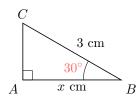
B.2 CALCULATING SIDE LENGTHS

Ex 13:



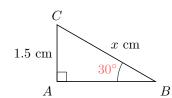
Calculate x.

 $x \approx$ cm (round to 2 decimal places)


Ex 14:

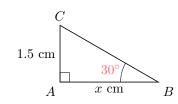
Calculate x.

 $x \approx$ cm (round to 2 decimal places)


Ex 15:

Calculate x.

 $x \approx$ cm (round to 2 decimal places)


Ex 16:

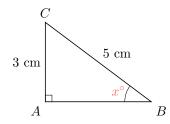
Calculate x.

 $x \approx |$ cm (round to 2 decimal places)

Ex 17:

Calculate x.

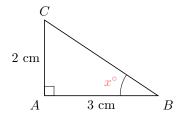
cm (round to 2 decimal places)


Calculate x.

cm (round to 2 decimal places)

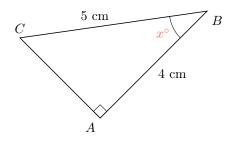
C INVERSE TRIGONOMETRIC FUNCTIONS

C.1 CALCULATING ANGLES



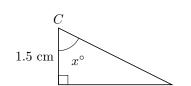
Calculate the angle x° .

° (round to 1 decimal place)



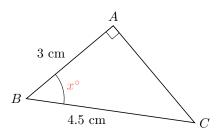
Calculate the angle x° .

° (round to 1 decimal place)

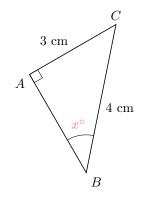


Calculate the angle x° .

° (round to 1 decimal place)


Ex 22:

Calculate the angle x° .


(round to 1 decimal place)

Ex 23:

Calculate the angle x° .

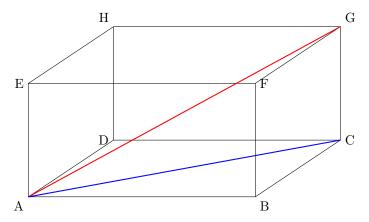
(round to 1 decimal place)

Calculate the angle x° .

° (round to 1 decimal place)

REAL-WORLD SOLVING TRIGONOMETRY PROBLEMS

REAL-WORLD TRIGONOMETRY D.1 SOLVING PROBLEMS

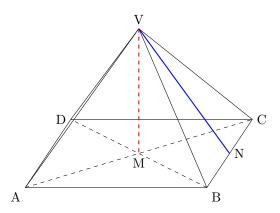

A cyclist in France rides up a long incline with an average rise of 6° . If he rides for $6\,200$ m, how far has he climbed vertically?

m (round to the nearest integer) Ex 26: The lamp in a lighthouse is 64 m above sea level. The angle of depression from the lamp to a fishing boat is 11°. How far horizontally is the boat from the lighthouse? m (round to the nearest integer)	Ex 30: Two observers, on opposite sides of a radio tower, are standing on a straight line that passes through the base of the tower. The observers are 120 m apart. The angle of elevation from the first observer to the top of the tower is 32°, and from the second observer, it is 48°. Find the height of the tower, correct to one decimal place.
Ex 27: For the triangular roof truss illustrated, find the length of a rafter if the beam is 13.8 m and the pitch is 20°.	
A beam = 13.8 m B m (round to 2 decimal places) Ex 28: A person standing 50 m from the base of a tower looks up at the top with an angle of elevation of 28°. Find the height of the tower. m (round to the nearest integer)	
D.2 SOLVING MULTI-STEP TRIGONOMETRIC PROBLEMS Ex 29: From a point A on the ground, the angle of elevation to the top of a building is 24°. From a point B, which	Ex 31: An observer stands on top of a vertical cliff of height 80 m. She measures the angle of depression to a boat at sea as 12°. At the same instant, she measures the angle of elevation to a helicopter flying directly above the boat as 20°. Find the height of the helicopter above the sea, correct to one
elevation to the top of a building is 24°. From a point B, which is 50 m closer to the building, the angle of elevation is 38°. Find the height of the building, correct to one decimal place.	decimal place.

E ANGLE BETWEEN A LINE AND A PLANE

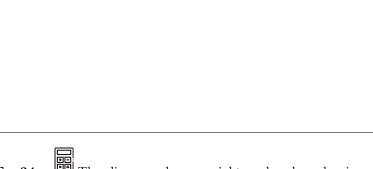
E.1 APPLYING TRIGONOMETRY IN 3D SPACE

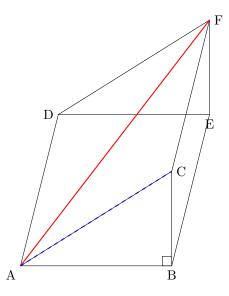
Ex 32: The diagram shows a cuboid with dimensions AB = 8 cm, BC = 6 cm, and CG = 5 cm.



Find:

- 1. The exact length of the space diagonal AG.
- 2. The angle that the diagonal AG makes with the base plane ABCD.


Ex 33: The diagram shows a right pyramid with a square base ABCD of side length 10 cm. The vertex V is vertically above the center of the base, M, and the height of the pyramid VM is 12 cm.


Find:

1. The exact length of the slant height VN of the triangular face VBC.

2. The angle between the face VBC and the base plane ABCD.

Ex 34: The diagram shows a right wedge-shaped prism whose cross-section ABC is a right-angled triangle. The dimensions are AB=15 cm, BC=8 cm, and the length of the prism is 30 cm (so CF=30 cm).

Find:

- 1. The exact length of the space diagonal AF.
- 2. The angle that the diagonal AF makes with the vertical face BCFE.

