A COMPLEMENTARY SUPPLEMENTARY ANGLES

AND

A.1 CALCULATING COMPLEMENTARY ANGLES

Ex 1: Calculate the complementary angle to 63°.

Complementary angle = $\boxed{27}^{\circ}$

Answer: The sum of complementary angles is 90° .

$$x^{\circ} + 63^{\circ} = 90^{\circ}$$

 $x^{\circ} = 90^{\circ} - 63^{\circ}$ (subtract 63°)
 $= 27^{\circ}$

Ex 2: Calculate the complementary angle to 87°.

Complementary angle = $\boxed{3}^{\circ}$

Answer: The sum of complementary angles is 90° .

$$x^{\circ} + 87^{\circ} = 90^{\circ}$$
$$x^{\circ} = 90^{\circ} - 87^{\circ} \quad \text{(subtract } 87^{\circ}\text{)}$$
$$= 3^{\circ}$$

Ex 3: Calculate the complementary angle to 72° .

Complementary angle = $\boxed{18}^{\circ}$

Answer: The sum of complementary angles is 90°.

$$x^{\circ} + 72^{\circ} = 90^{\circ}$$

 $x^{\circ} = 90^{\circ} - 72^{\circ}$ (subtract 72°)
 $= 18^{\circ}$

Ex 4: Calculate the complementary angle to 19°.

Complementary angle = $\boxed{71}^{\circ}$

Answer: The sum of complementary angles is 90° .

$$x^{\circ} + 19^{\circ} = 90^{\circ}$$

 $x^{\circ} = 90^{\circ} - 19^{\circ}$ (subtract 19°)
 $= 71^{\circ}$

A.2 VERIFYING COMPLEMENTARY ANGLES

MCQ 5: Are the angles 36° and 54° complementary?

Choose one answer

 \boxtimes Yes

 \square No

Answer.

$$36^{\circ} + 54^{\circ} = 90^{\circ}$$
 (add the angles)
= 90°

Since $36^{\circ} + 54^{\circ} = 90^{\circ}$, the angles are complementary.

MCQ 6: Are the angles 30° and 61° complementary?

Choose one answer

 \square Yes

⊠ No

Answer:

$$30^{\circ} + 61^{\circ} = 91^{\circ}$$
 (add the angles)
 $\neq 90^{\circ}$

Since $30^{\circ} + 61^{\circ} \neq 90^{\circ}$, the angles are not complementary.

MCQ 7: Are the angles 42° and 48° complementary?

Choose one answer

⊠ Yes

□ No

Answer: The sum of complementary angles is 90°.

$$42^{\circ} + 48^{\circ} = 90^{\circ}$$
 (add the angles)
= 90°

Since $42^{\circ} + 48^{\circ} = 90^{\circ}$, the angles are complementary.

MCQ 8: Are the angles 25° and 66° complementary?

Choose one answer

 \square Yes

⊠ No

Answer: The sum of complementary angles is 90° .

$$25^{\circ} + 66^{\circ} = 91^{\circ}$$
 (add the angles)
 $\neq 90^{\circ}$

Since $25^{\circ} + 66^{\circ} \neq 90^{\circ}$, the angles are not complementary.

A.3 CALCULATING SUPPLEMENTARY ANGLES

Ex 9: Calculate the supplementary angle to 115°.

Supplementary angle
$$=$$
 $\boxed{65}^{\circ}$

Answer: The sum of supplementary angles is 180°.

$$x^{\circ} + 115^{\circ} = 180^{\circ}$$

 $x^{\circ} = 180^{\circ} - 115^{\circ}$ (subtract 115°)
 $= 65^{\circ}$

Ex 10: Calculate the supplementary angle to 168°.

Supplementary angle =
$$\boxed{12}^{\circ}$$

Answer: The sum of supplementary angles is 180°.

$$x^{\circ} + 168^{\circ} = 180^{\circ}$$

 $x^{\circ} = 180^{\circ} - 168^{\circ}$ (subtract 168°)
 $= 12^{\circ}$

Ex 11: Calculate the supplementary angle to 132°.

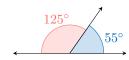
Supplementary angle =
$$\boxed{48}^{\circ}$$

Answer: The sum of supplementary angles is 180°.

$$x^{\circ} + 132^{\circ} = 180^{\circ}$$

 $x^{\circ} = 180^{\circ} - 132^{\circ}$ (subtract 132°)
 $= 48^{\circ}$

Ex 12: Calculate the supplementary angle to 47° .


Supplementary angle =
$$\boxed{133}^{\circ}$$

Answer: The sum of supplementary angles is 180°.

$$x^{\circ} + 47^{\circ} = 180^{\circ}$$

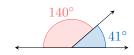
 $x^{\circ} = 180^{\circ} - 47^{\circ}$ (subtract 47°)
 $= 133^{\circ}$

A.4 VERIFYING SUPPLEMENTARY ANGLES

MCQ 13: Are the angles 125° and 55° supplementary?

Choose one answer

⊠ Yes


 \square No

Answer: The sum of supplementary angles is 180°.

$$125^{\circ} + 55^{\circ} = 180^{\circ}$$
 (add the angles)
= 180°

Since $125^{\circ} + 55^{\circ} = 180^{\circ}$, the angles are supplementary.

MCQ 14: Are the angles 140° and 41° supplementary?

Choose one answer

 \square Yes


⊠ No

Answer: The sum of supplementary angles is 180°.

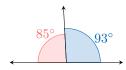
$$140^{\circ} + 41^{\circ} = 181^{\circ}$$
 (add the angles)
 $\neq 180^{\circ}$

Since $140^{\circ} + 41^{\circ} \neq 180^{\circ}$, the angles are not supplementary.

MCQ 15: Are the angles 108° and 72° supplementary?

Choose one answer

 \boxtimes Yes


□ No

Answer: The sum of supplementary angles is 180°.

$$108^{\circ} + 72^{\circ} = 180^{\circ}$$
 (add the angles)
= 180°

Since $108^{\circ} + 72^{\circ} = 180^{\circ}$, the angles are supplementary.

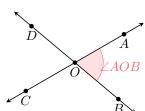
MCQ 16: Are the angles 85° and 93° supplementary?

Choose one answer

□ Yes

⊠ No

Answer: The sum of supplementary angles is 180°.

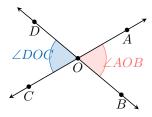

$$85^{\circ} + 93^{\circ} = 178^{\circ}$$
 (add the angles)
 $\neq 180^{\circ}$

Since $85^{\circ} + 93^{\circ} \neq 180^{\circ}$, the angles are not supplementary.

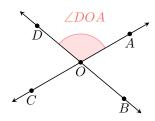
B OPPOSITE ANGLES AT A VERTEX

B.1 IDENTIFYING OPPOSITE ANGLES AT A VERTEX

MCQ 17: Identify the angle opposite $\angle AOB$ at the vertex.


 $\square \angle DOA$

 $\square \angle COB$

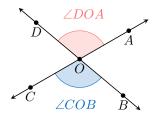

 $\boxtimes \angle DOC$

 $\square \angle AOD$

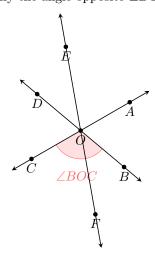
Answer: Opposite angles at a vertex are formed by two intersecting lines and are equal. The angle opposite $\angle AOB$ at the vertex is $\angle DOC$.

MCQ 18: Identify the angle opposite $\angle DOA$ at the vertex.

Choose one answer


 $\square \angle DOA$

 $\boxtimes \angle COB$

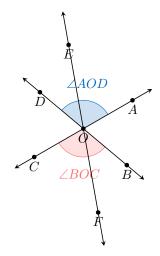

 $\square \angle DOC$

 $\square \angle AOD$

Answer: Opposite angles at a vertex are formed by two intersecting lines and are equal. The angle opposite $\angle DOA$ at the vertex is $\angle COB$.

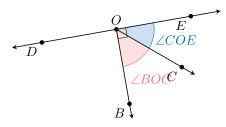
MCQ 19: Identify the angle opposite $\angle BOC$ at the vertex.

Choose one answer


 $\square \angle DOC$

 $\square \angle DOE$

 $\square \angle EOA$


 $\boxtimes \angle AOD$

Answer: Opposite angles at a vertex are formed by two intersecting lines and are equal. The angle opposite $\angle BOC$ at the vertex is $\angle AOD$.

B.2 DETERMINING ANGLE RELATIONSHIPS

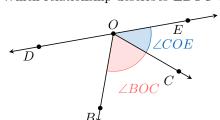
MCQ 20: Which relationship describes $\angle BOC$ and $\angle COE$?

Choose one answer

 \square Opposite angles at a vertex

 \square Complementary angles

 \square Supplementary angles


 \square None of the above

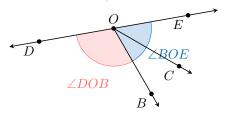
Answer: The angle $\angle BOE$ is a right angle ($\angle BOE = 90^{\circ}$). Since $\angle BOC$ and $\angle COE$ share ray OC and form $\angle BOE$, their sum is:

$$\angle BOC + \angle COE = \angle BOE$$
 (angle addition)
= 90°

Since $\angle BOC + \angle COE = 90^{\circ}$, they are complementary angles.

MCQ 21: Which relationship describes $\angle BOC$ and $\angle COE$?

 \Box Opposite angles at a vertex


☐ Complementary angles

☐ Supplementary angles

 \boxtimes None of the above

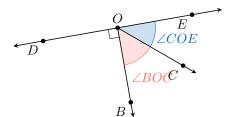
Answer: The angles $\angle BOC$ and $\angle COE$ share ray OC but do not form a straight line, right angle, or opposite pair at the vertex. Their sum is not constrained to 90° or 180°, and they are not opposite angles at a vertex.

MCQ 22: Which relationship describes $\angle DOB$ and $\angle BOE$?

Choose one answer

 \square Opposite angles at a vertex

 \square Complementary angles


 \square None of the above

Answer: The angles $\angle DOB$ and $\angle BOE$ share ray OB and form a straight line along \overrightarrow{ED} , making their sum:

$$\angle DOB + \angle BOE = 180^{\circ}$$
 (straight angle)
= 180°

Since $\angle DOB + \angle BOE = 180^{\circ}$, they are supplementary angles.

MCQ 23: Which relationship describes $\angle BOC$ and $\angle COE$?

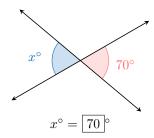
Choose one answer

 \square Opposite angles at a vertex

⊠ Complementary angles

 \square Supplementary angles

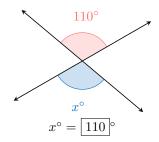
 \square None of the above


Answer: The angle $\angle DOB$ is a right angle ($\angle DOB = 90^{\circ}$). The angles $\angle BOC$, $\angle COE$, and $\angle DOB$ form a straight line along \overrightarrow{DE} , so:

$$\angle BOC + \angle COE + \angle DOB = 180^{\circ}$$
 (straight angle)
 $\angle BOC + \angle COE + 90^{\circ} = 180^{\circ}$
 $\angle BOC + \angle COE = 180^{\circ} - 90^{\circ}$ (subtract 90°)
 $= 90^{\circ}$

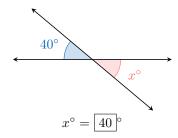
Since $\angle BOC + \angle COE = 90^{\circ}$, they are complementary angles.

B.3 CALCULATING UNKNOWN ANGLES


Ex 24: Find the measure of the unknown angle x° .

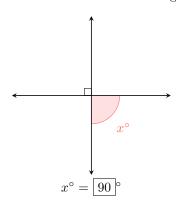
Answer: Opposite angles formed by two crossing lines are equal. The purple angle (x°) is opposite the red angle (70°) .

$$x^{\circ} = 70^{\circ}$$
 (opposite angles are equal)


Ex 25: Find the measure of the unknown angle x° .

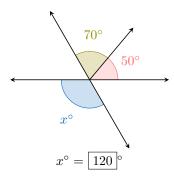
Answer: Opposite angles formed by two crossing lines are equal. The purple angle (x°) is opposite the red angle (110°) .

$$x^{\circ} = 110^{\circ}$$
 (opposite angles are equal)


Ex 26: Find the measure of the unknown angle x° .

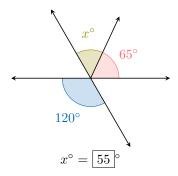
Answer: Opposite angles formed by two crossing lines are equal. The red angle (x°) is opposite the purple angle (40°) .

$$x^{\circ} = 40^{\circ}$$
 (opposite angles are equal)


Ex 27: Find the measure of the unknown angle x° .

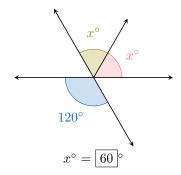
Answer: Opposite angles formed by two crossing lines are equal. forming a larger angle. This larger angle is opposite the purple The red angle (x°) is opposite a right angle (90°) .

$$x^{\circ} = 90^{\circ}$$
 (opposite angles are equal)


Ex 28: Find the measure of the unknown angle x° .

Answer: Opposite angles formed by two crossing lines are equal. The green angle (50°) and blue angle (70°) are next to each other, forming a larger angle. This larger angle is opposite the purple angle (x°) .

$$x^{\circ} = 50^{\circ} + 70^{\circ}$$
 (add the green and blue angles)
= 120° (opposite angles are equal)

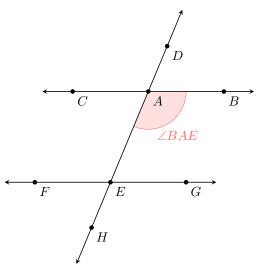

Ex 29: Find the measure of the unknown angle x° .

Answer: Opposite angles formed by two crossing lines are equal. The green angle (65°) and blue angle (x°) are next to each other, forming a larger angle. This larger angle is opposite the purple angle (120°) .

$$65^{\circ} + x^{\circ} = 120^{\circ}$$
 (opposite angles are equal)
 $x^{\circ} = 120^{\circ} - 65^{\circ}$ (subtract 65°)
 $= 55^{\circ}$

Ex 30: Find the measure of the unknown angle x° .

Answer: Opposite angles formed by two crossing lines are equal. The green angle (x°) and blue angle (x°) are next to each other,


angle (120°) .

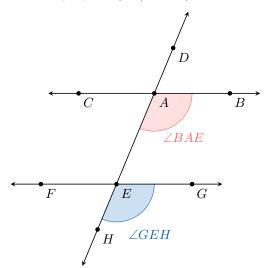
$$x^{\circ} + x^{\circ} = 120^{\circ}$$
 (opposite angles are equal)
 $2x^{\circ} = 120^{\circ}$ (combine like terms)
 $x^{\circ} = 120^{\circ} \div 2$ (divide by 2)
 $= 60^{\circ}$

CORRESPONDING, ALTERNATE, AND **CO-INTERIOR ANGLES**

C.1 IDENTIFYING ANGLES

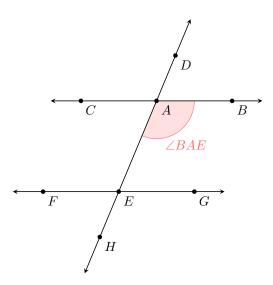
MCQ 31: Identify the corresponding angle to $\angle BAE$.

Choose one answer


 $\square \angle CAD$

 $\square \angle FEA$

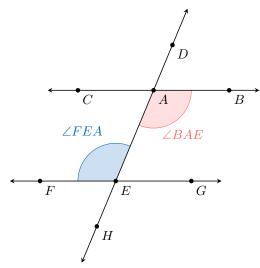
 $\square \angle AEG$


 $\boxtimes \angle GEH$

Answer: Corresponding angles are in the same position on parallel lines cut by a transversal and are equal. The red angle $(\angle BAE)$ corresponds to the purple angle ($\angle GEH$).

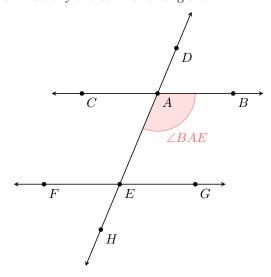
 $\angle BAE = \angle GEH$ (corresponding angles are equal)

MCQ 32: Identify the alternate angle to $\angle BAE$.


 $\square \angle CAD$

 $\boxtimes \angle FEA$

 $\square \angle AEG$

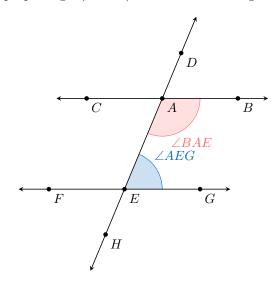

 $\square \angle GEH$

Answer: Alternate angles are on opposite sides of the transversal between parallel lines and are equal. The red angle $(\angle BAE)$ has the purple angle $(\angle FEA)$ as its alternate angle.

 $\angle BAE = \angle FEA$ (alternate angles are equal)

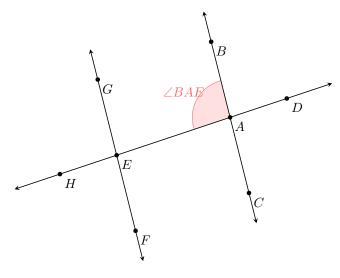
MCQ 33: Identify the co-interior angle to $\angle BAE$.

Choose one answer


 $\square \ \angle{CAD}$

 $\square \angle FEA$

 $\boxtimes \angle AEG$

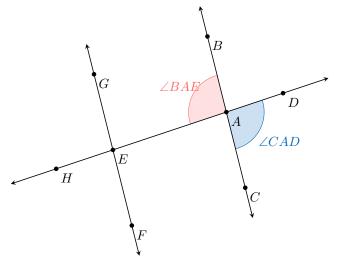

 $\square \angle GEH$

Answer: Co-interior angles are on the same side of the transversal between parallel lines and sum to 180° . The red angle ($\angle BAE$) has the purple angle ($\angle AEG$) as its co-interior angle.

 $\angle BAE + \angle AEG = 180^{\circ}$ (co-interior angles sum to 180°)

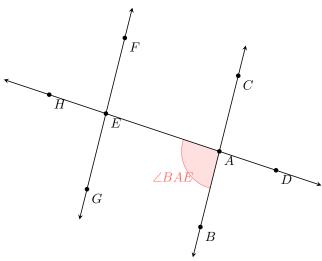
MCQ 34: Identify the opposite angle to $\angle BAE$.

Choose one answer

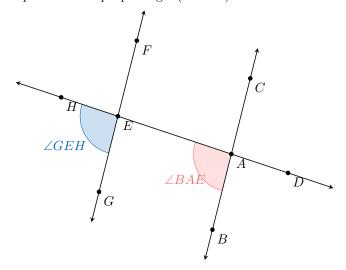

 $\boxtimes \angle CAD$

 $\square \angle FEA$

 $\square \angle AEG$

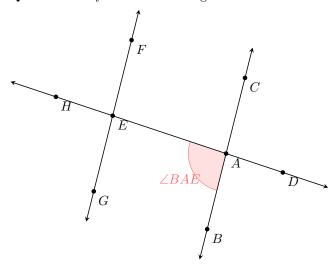

 $\square \angle GEH$

Answer: Opposite angles at a vertex are formed by two intersecting lines and are equal. The red angle $(\angle BAE)$ is opposite the purple angle $(\angle CAD)$ at point A.


 $\angle BAE = \angle CAD$ (opposite angles are equal)

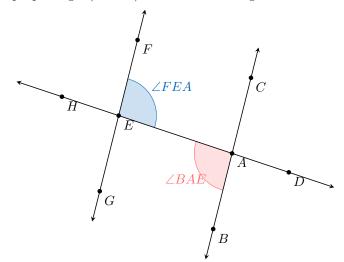
MCQ 35: Identify the corresponding angle to $\angle BAE$.

- $\square \angle CAD$
- $\square \angle FEA$
- $\square \angle AEG$
- $\boxtimes \angle GEH$

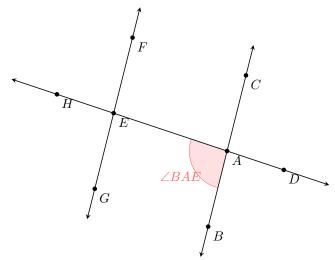

Answer: Corresponding angles are in the same position on parallel lines cut by a transversal and are equal. The red angle $(\angle BAE)$ corresponds to the purple angle $(\angle GEH)$.

 $\angle BAE = \angle GEH$ (corresponding angles are equal)

7


MCQ 36: Identify the alternate angle to $\angle BAE$.

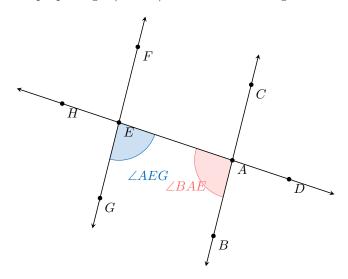
Choose one answer


- $\square \ \angle{CAD}$
- $\boxtimes \angle FEA$
- $\square \angle AEG$
- $\square \ \angle GEH$

Answer: Alternate angles are on opposite sides of the transversal between parallel lines and are equal. The red angle $(\angle BAE)$ has the purple angle $(\angle FEA)$ as its alternate angle.

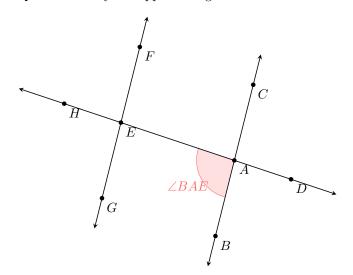
 $\angle BAE = \angle FEA$ (alternate angles are equal)

MCQ 37: Identify the co-interior angle to $\angle BAE$.


 $\square \angle CAD$

 $\square \angle FEA$

 $\boxtimes \angle AEG$

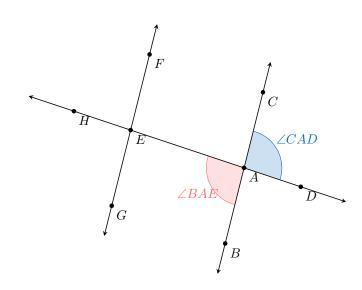

 $\square \angle GEH$

Answer: Co-interior angles are on the same side of the transversal between parallel lines and sum to 180° . The red angle ($\angle BAE$) has the purple angle ($\angle AEG$) as its co-interior angle.

 $\angle BAE + \angle AEG = 180^{\circ}$ (co-interior angles sum to 180°)

MCQ 38: Identify the opposite angle to $\angle BAE$.

Choose one answer

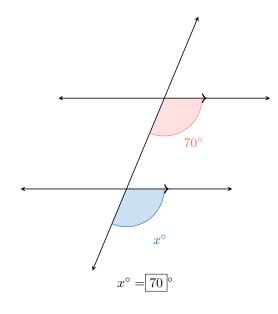

 $\boxtimes \angle CAD$

 $\square \angle FEA$

 $\square \angle AEG$

 $\square \angle GEH$

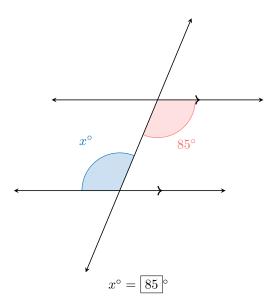
Answer: Opposite angles at a vertex are formed by two intersecting lines and are equal. The red angle $(\angle BAE)$ is opposite the purple angle $(\angle CAD)$ at point A.



 $\angle BAE = \angle CAD$ (opposite angles are equal)

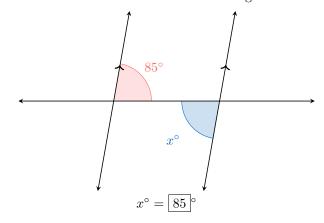
D PROPERTIES OF PARALLEL LINES

D.1 CALCULATING UNKNOWN ANGLES: LEVEL 1


Ex 39: Find the measure of the unknown angle x° .

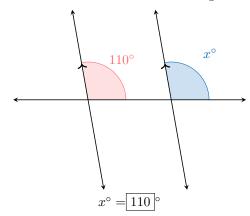
Answer: Corresponding angles are in the same position on parallel lines cut by a transversal and are equal. The purple angle (x°) corresponds to the red angle (70°) .

 $x^{\circ} = 70^{\circ}$ (corresponding angles are equal)


Ex 40: Find the measure of the unknown angle x° .

Answer: Alternate angles are on opposite sides of the transversal between parallel lines and are equal. The purple angle (x°) is alternate to the red angle (85°) .

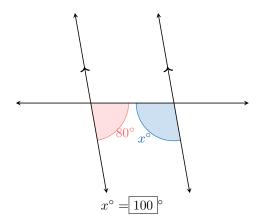
$$x^{\circ} = 85^{\circ}$$
 (alternate angles are equal)


Ex 41: Find the measure of the unknown angle x° .

Answer: Alternate angles are on opposite sides of the transversal between parallel lines and are equal. The purple angle (x°) is alternate to the red angle (85°) .

$$x^{\circ} = 85^{\circ}$$
 (alternate angles are equal)

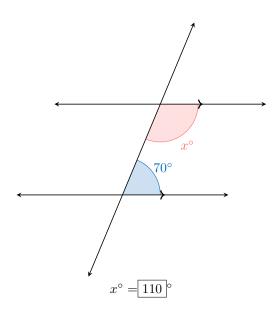
Ex 42: Find the measure of the unknown angle x° .



Answer: Corresponding angles are in the same position on parallel lines cut by a transversal and are equal. The purple angle (x°) corresponds to the red angle (110°) .

$$x^{\circ} = 110^{\circ}$$
 (corresponding angles are equal)

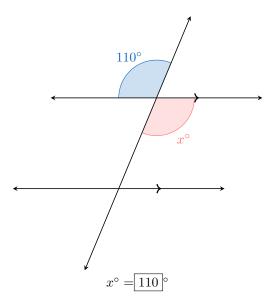
D.2 CALCULATING UNKNOWN ANGLES: LEVEL 2


Ex 43: Find the measure of the unknown angle x° .

Answer: Co-interior angles are on the same side of the transversal between parallel lines and sum to 180° . The purple angle (x°) is co-interior to the red angle (80°) .

$$x^{\circ} + 80^{\circ} = 180^{\circ}$$
 (co-interior angles sum to 180°)
 $x^{\circ} = 180^{\circ} - 80^{\circ}$ (subtract 80°)
 $= 100^{\circ}$

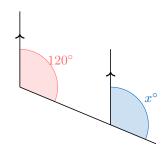
Ex 44: Find the measure of the unknown angle x° .



Answer: Co-interior angles are on the same side of the transversal between parallel lines and sum to 180° . The red angle (x°) is co-interior to the purple angle (70°) .

$$x^{\circ} + 70^{\circ} = 180^{\circ}$$
 (co-interior angles sum to 180°)
 $x^{\circ} = 180^{\circ} - 70^{\circ}$ (subtract 70°)
 $= 110^{\circ}$

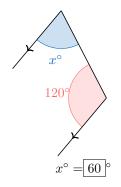
Ex 45: Find the measure of the unknown angle x° .



Answer: Opposite angles at a vertex are formed by two intersecting lines and are equal. The red angle (x°) is opposite the purple angle (110°) at point A.

$$x^{\circ} = 110^{\circ}$$
 (opposite angles are equal)

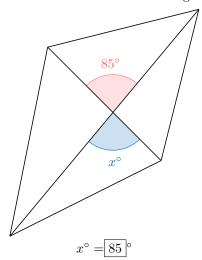
Ex 46: Find the measure of the unknown angle x° .



$$x^{\circ} = \boxed{120}^{\circ}$$

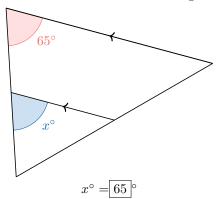
Answer: Corresponding angles are in the same position on parallel lines cut by a transversal and are equal. The purple angle (x°) corresponds to the red angle (120°) .

$$x^{\circ} = 120^{\circ}$$
 (corresponding angles are equal)


Ex 47: Find the measure of the unknown angle x° .

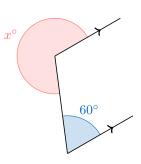
Answer: Co-interior angles are on the same side of the transversal between parallel lines and sum to 180° . The purple angle (x°) is co-interior to the red angle (120°) .

$$x^{\circ} + 120^{\circ} = 180^{\circ}$$
 (co-interior angles sum to 180°)
 $x^{\circ} = 180^{\circ} - 120^{\circ}$ (subtract 120°)
 $= 60^{\circ}$

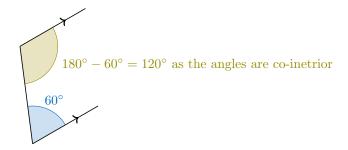

Ex 48: Find the measure of the unknown angle x° .

Answer: Opposite angles at a vertex are formed by two intersecting lines and are equal. The purple angle (x°) is opposite the red angle (85°) at the intersection point.

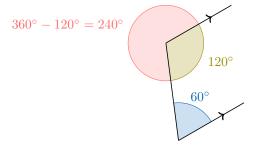
$$x^{\circ} = 85^{\circ}$$
 (opposite angles are equal)


Ex 49: Find the measure of the unknown angle x° .

Answer: Corresponding angles are in the same position on parallel lines cut by a transversal and are equal. The purple angle (x°) corresponds to the red angle (65°) .


$$x^{\circ} = 65^{\circ}$$
 (corresponding angles are equal)

Ex 50: Find the measure of the unknown angle x° .



$$x^{\circ} = 240$$

1. Step 1:

2. Step 2 : as the sum of angles in a point is equal to $360^{\circ}.$

