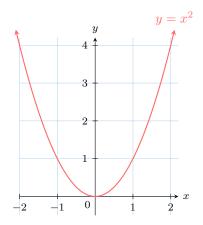
REFERENCE FUNCTIONS

Introduction In mathematics, **reference functions** are fundamental building blocks that help us understand more complex relationships. This chapter explores the following functions:

• Square Function: $f(x) = x^2$

• Square Root Function: $f(x) = \sqrt{x}$

• Cube Function: $f(x) = x^3$

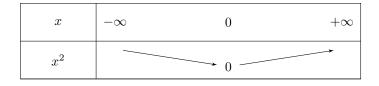

• Inverse Function: $f(x) = \frac{1}{x}$

For each function, we will investigate its definition and equation, its graph and properties and Real-world examples.

A SQUARE FUNCTION

Definition square function -

The square function is given by $f(x) = x^2$. This means that each input value x is multiplied by itself to give the output.


• **Domain**: All real numbers (\mathbb{R})

• Shape: A parabola opening upwards.

Proposition **Properties** _

• For any real number $x, x^2 \ge 0$.

• The square function is strictly decreasing on $(-\infty, 0]$ and strictly increasing on $[0, +\infty)$.

• The square function is even (its graph is symmetric with respect to the y-axis).

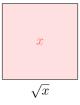
Ex: A square has a side length x meters. Its area is given by $A(x) = x^2$.

For example, for x = 4 meters, $A(4) = 4^2 = 16$ square meters.

B SQUARE ROOT FUNCTION

Definition Square Root Function -

The square root function is given by $f(x) = \sqrt{x}$. It is the inverse of the square function, where the output is the non-negative value that, when squared, gives the input.

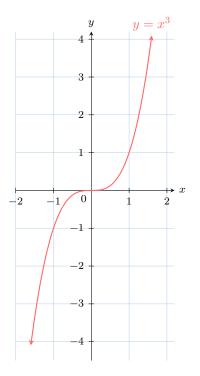

- **Domain**: $[0, +\infty)$ (non-negative real numbers)
- Shape: A curve that increases rapidly for small x and more slowly as x grows.

Proposition **Properties** -

The square root function is strictly increasing on $[0, +\infty)$.

x	0	$+\infty$
\sqrt{x}	0	→

Ex: Let a square have an area of x square meters. The length of the side of the square is $l(x) = \sqrt{x}$.



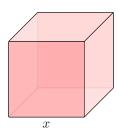
For example, for x=25 square meters, $l(x)=\sqrt{25}=5$ meters.

C CUBE FUNCTION

Definition Cube Function -

The **cube function** is given by $f(x) = x^3$.

Domain: All real numbers (\mathbb{R})

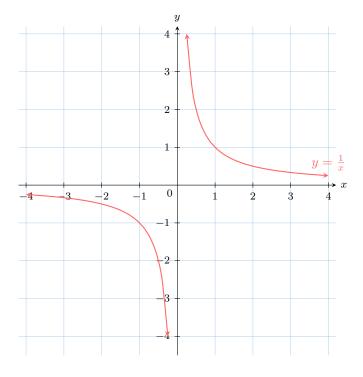

Proposition Properties -

• The cube function is strictly increasing on $(-\infty, +\infty)$.

x	$-\infty$	$+\infty$
x^3		→

• The cube function is odd (its graph is symmetric symmetric about the origin).

Ex: The volume of a cube with a side length x meters is $V(x) = x^3$.



For example, for x = 3 meters, $V(3) = 3^3 = 27$ cubic meters.

D INVERSE FUNCTION

Definition Inverse Function

The **inverse Function** is given by $f(x) = \frac{1}{x}$. It represents a reciprocal relationship, where the output is the reciprocal of the input.

• Domain: \mathbb{R}^* $(x \neq 0)$

• Shape: a hyperbola.

Proposition **Properties**

• The inverse function is strictly decreasing on $(-\infty,0)$ and strictly decreasing on $(0,+\infty)$.

x	$-\infty$	0 +	$-\infty$
$\frac{1}{x}$			

• The inverse function is odd (its graph is symmetric symmetric about the origin).