REFERENCE FUNCTIONS

Introduction In mathematics, **reference functions** are fundamental building blocks that help us understand more complex relationships. This chapter explores the following functions:

- Square Function: $f(x) = x^2$
- Square Root Function: $f(x) = \sqrt{x}$
- Cube Function: $f(x) = x^3$
- Inverse Function: $f(x) = \frac{1}{x}$

For each function, we will investigate its definition and equation, its graph and properties and Real-world examples.

A SQUARE FUNCTION

Definition square function

The square function is given by $f(x) = x^2$. This means that each input value x is multiplied by itself to give the output.

- **Domain**: All real numbers (\mathbb{R})
- Shape: A parabola opening upwards.

Proposition **Properties**

- For any real number $x, x^2 \ge 0$.
- The square function is strictly decreasing on $(-\infty, 0]$ and strictly increasing on $[0, +\infty)$.

• The square function is even (its graph is symmetric with respect to the *y*-axis).

Proof

Let $f(x) = x^2$.

- The product of two real numbers with the same sign is positive, so $x^2 = x \times x$ is positive.
- •

$$f(-x) = (-x)^2$$
$$= (-x) \times (-x)$$
$$= x^2$$
$$= f(x).$$

Thus, f is even.

• - Let a and b be two real numbers such that $0 \leq a < b$.

$$\begin{split} f(b) - f(a) &= b^2 - a^2 \\ &= (b-a)(b+a) \\ &> 0 \qquad \qquad \text{since } (b-a) > 0 \text{ and } (b+a) > 0 \end{split}$$

Thus, f(a) < f(b). Therefore, f is strictly increasing on $[0, +\infty)$. - Let a and b be two real numbers such that $a < b \leq 0$.

$$f(b) - f(a) = b^{2} - a^{2}$$

= $(b - a)(b + a)$
< 0 car $(b - a) > 0$ and $(b + a) < 0$.

Thus, f(a) > f(b). Therefore, f is strictly decreasing on $(-\infty, 0]$.

Ex: A square has a side length x meters. Its area is given by $A(x) = x^2$.

For example, for x = 4 meters, $A(4) = 4^2 = 16$ square meters.

B SQUARE ROOT FUNCTION

Definition Square Root Function

The square root function is given by $f(x) = \sqrt{x}$. It is the inverse of the square function, where the output is the non-negative value that, when squared, gives the input.

- **Domain**: $[0, +\infty)$ (non-negative real numbers)
- Shape: A curve that increases rapidly for small x and more slowly as x grows.

Proposition **Properties**

The square root function is strictly increasing on $[0, +\infty)$.

Proof Let $f(x) = \sqrt{x}$.

Let a and b be two real numbers such that $0 \leq a < b$.

$$\begin{split} f(b) - f(a) &= \sqrt{b} - \sqrt{a} \\ &= \frac{(\sqrt{b} - \sqrt{a})(\sqrt{a} + \sqrt{b})}{\sqrt{a} + \sqrt{b}} \\ &= \frac{\left(\sqrt{b}\right)^2 - (\sqrt{a})^2}{\sqrt{a} + \sqrt{b}} \\ &= \frac{b - a}{\sqrt{a} + \sqrt{b}} \\ &> 0 \qquad \text{since } b - a > 0 \text{ and } \sqrt{a} + \sqrt{b} > 0. \end{split}$$

Thus, f(a) < f(b). The square root function is strictly increasing on $[0, +\infty)$.

Ex: Let a square have an area of x square meters. The length of the side of the square is $l(x) = \sqrt{x}$.

For example, for x = 25 square meters, $l(x) = \sqrt{25} = 5$ meters.

C CUBE FUNCTION

Definition Cube Function -

The **cube function** is given by $f(x) = x^3$.

Proposition **Properties**

• The cube function is strictly increasing on $(-\infty, +\infty)$.

• The cube function is odd (its graph is symmetric symmetric about the origin).

Proof

Let $f(x) = x^3$.

$$f(-x) = (-x)^{3}$$

= (-x) × (-x) × (-x)
= -(x × x × x)
= -x^{3}
= -f(x).

Thus, f is odd.

• The proof of the variation of the cube function will be done using the derivative tool.

Ex: The volume of a cube with a side length x meters is $V(x) = x^3$.

For example, for x = 3 meters, $V(3) = 3^3 = 27$ cubic meters.

D INVERSE FUNCTION

Definition Inverse Function

The **inverse Function** is given by $f(x) = \frac{1}{x}$. It represents a reciprocal relationship, where the output is the reciprocal of the input.

- Domain: \mathbb{R}^* $(x \neq 0)$
- Shape: a hyperbola.

Proposition **Properties**

• The inverse function is strictly decreasing on $(-\infty, 0)$ and strictly decreasing on $(0, +\infty)$.

• The inverse function is odd (its graph is symmetric symmetric about the origin).

Proof Let $f(x) = \frac{1}{x}$

$$f(-x) = \frac{1}{-x}$$
$$= -\frac{1}{x}$$
$$= -f(x).$$

Thus, f is odd.

• - Let a and b be two real numbers such that 0 < a < b.

$$f(b) - f(a) = \frac{1}{b} - \frac{1}{a}$$
$$= \frac{a - b}{ba}$$
$$< 0 \qquad \text{since } a - b < 0 \text{ and } ba > 0.$$

Thus, f(a) > f(b). Therefore, f is strictly decreasing on $(0, +\infty)$.

- Similarly, the proof is identical to show that f is strictly decreasing on $(-\infty, 0)$.