A SQUARE FUNCTION

A.1 FINDING IMAGES AND ANTECEDENTS

Ex 1: For $f(x) = x^2$, fill the table of values:

x	-2	-1	0	1	2	
f(x)	4	1	0	1	4	

Answer explanation:

- $f(-2) = (-2)^2$ substituting x by (-2) = 4
- $f(-1) = (-1)^2$ substituting x by (-1)= 1
- $f(0) = (0)^2$ substituting x by (0) = 0
- $f(1) = (1)^2$ substituting x by (1) = 1
- $f(2) = (2)^2$ substituting x by (2) = 4

So the table of values is:

Ex 2: For $f(x) = x^2$,

$$f(\sqrt{2}) = \boxed{2}$$

Answer explanation:

$$f(\sqrt{2}) = \left(\sqrt{2}\right)^2 = 2$$

Ex 3: For $f(x) = x^2$,

$$f(3\sqrt{2}) = \fbox{18}$$

Answer explanation:

$$f(3\sqrt{2}) = \left(3\sqrt{2}\right)^2$$
$$= 3^2 \times \left(\sqrt{2}\right)^2$$
$$= 9 \times 2$$
$$= 18$$

MCQ 4: If x = -3, then $x^2 = -9$.

 \Box True

 \boxtimes False

Answer explanation: The statement "x = -3, then $x^2 = -9$ " is incorrect. Squaring any real number, whether positive or negative, always results in a non-negative value. Specifically:

$$(-3)^2 = 9.$$

Thus, the correct value of x^2 is 9, not -9. Correct Answer: False.

A.2 FINDING x SUCH THAT f(x) = k

Ex 5: For $f(x) = x^2$, find x such that f(x) = 4.

$$x = \boxed{-2}$$
 or $x = \boxed{2}$

Expected written answer:

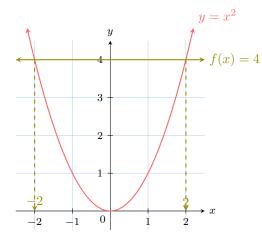
f(x) = 4 $\Leftrightarrow x^2 = 4$ $\Leftrightarrow x = -\sqrt{4} \text{ or } x = \sqrt{4}$ $\Leftrightarrow x = -2 \text{ or } x = 2$

Answer explanation:

• Remember, when solving $x^2 = 4$, do not forget the two solutions: x = -2 and x = 2. Both satisfy the equation because:

$$(-2)^2 = 4$$
 and $2^2 = 4$.

• Graphically, the values of x that satisfy f(x) = 4 are determined as follows:



Ex 6: For $f(x) = x^2$, find x such that f(x) = 1.

 $x = \boxed{-1}$ or $x = \boxed{1}$.

 $Expected written \ answer:$

$$f(x) = 1$$

$$\Leftrightarrow x^2 = 1$$

$$\Leftrightarrow x = -\sqrt{1} \text{ or } x = \sqrt{1}$$

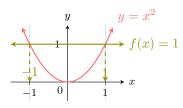
$$\Leftrightarrow x = -1 \text{ or } x = 1$$

Answer explanation:

Remember, when solving x² = 1, do not forget the two solutions: x = -1 and x = 1. Both satisfy the equation because:

$$(-1)^2 = 1$$
 and $1^2 = 1$

• Graphically, the values of x that satisfy f(x) = 1 are determined as follows:



Ex 7: For $f(x) = x^2$, find x such that f(x) = 0.

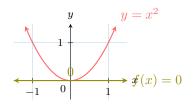
 $x = \boxed{0}.$

Expected written answer:

$$f(x) = \Leftrightarrow x^2 = 0 \Leftrightarrow x = 0$$

Answer explanation:

- Remember, when solving $x^2 = 0$, there is only one solution: x = 0. This is because the square of x can only equal 0 if x itself is 0.
- Graphically, the value of x that satisfies f(x) = 0 is determined as follows:



Ex 8: For $f(x) = x^2$, find x such that f(x) = -1.

This equation has no solution because $x^2 \ge 0$ for all x.

graph of $y = x^2$ lies entirely above the x-axis.

Expected written answer:

Answer explanation:

is non-negative.

MCQ 9: If $x^2 = 9$, then x = 3.

□ True

 \boxtimes False

Answer explanation: If $x^2 = 9$, then x can be either 3 or -3 because both satisfy the equation:

$$3^2 = 9$$
 and $(-3)^2 = 9$.

Thus, the correct statement should be:"If $x^2 = 9$, then x = 3 or x = -3."

A.3 COMPARING

Ex 10: Compare 2.2^2 and 2.4^2 .

 $2.2^2 < 2.4^2$

Expected written answer:

$$2.2 < 2.4$$

 $\Rightarrow 2.2^2 < 2.4^2 \quad (x \mapsto x^2 \text{ is strictly increasing on } [0, +\infty))$

Answer explanation:

- 2.2 < 2.4.
- Since the function $x \mapsto x^2$ is strictly increasing on the interval $[0, +\infty)$, the order between 2.2 and 2.4 is preserved when squaring the values.
- Thus, we conclude:

 $2.2^2 < 2.4^2.$

Ex 11: Compare $(-1000)^2$ and $(-999)^2$.

$$(-1000)^2 > (-999)^2$$

Expected written answer:

$$f(x) = -1 \qquad -1000 < -999$$

$$\Rightarrow x^2 = -1 \qquad \Rightarrow (-1000)^2 > (-999)^2 \quad (x \mapsto x^2 \text{ is strictly decreasing on } (-\infty, 0]$$

Answer explanation:

- -1000 < -999.
- Since the function $x \mapsto x^2$ is strictly decreasing on the interval $(-\infty, 0]$, the order between -1000 and -999 is reversed when squaring the values.
- Thus, we conclude:

$$(-1000)^2 > (-999)^2.$$

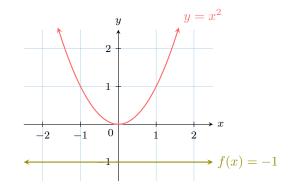
Ex 12: Compare $(-10)^2$ and 10^2 .

 $(-10)^2 = 10^2$

 $Expected written \ answer:$

• Solution 1:

 $(-10)^2 = (-10) \times (-10) = 100$ and $10^2 = 10 \times 10 = 100$, $\Rightarrow (-10)^2 = 10^2$.



• Recall that $x^2 \ge 0$ for all real values of x. This means

• Graphically, there is no x for which f(x) = -1 because the

 $x^2 = -1$ is impossible because the square of any real number

• Solution 2: The function $f(x) = x^2$ is an even function, meaning f(x) = f(-x). Therefore:

 $(-10)^2 = 10^2.$

Answer explanation:

• The square of a number, whether positive or negative, results in the same positive value:

$$(-10)^2 = (-10) \times (-10) = 100$$

 $10^2 = 10 \times 10 = 100.$

• Therefore:

 $(-10)^2 = 10^2.$

Ex 13: Compare $(200)^2$ and $(100)^2$.

$$(200)^2 > (100)^2$$

Expected written answer:

200 > 100 $\Rightarrow (200)^2 > (100)^2 \qquad (x \mapsto x^2 \text{ is strictly increasing on } [0, +\infty))$

Answer explanation:

- 200 > 100.
- Since the function $x \mapsto x^2$ is strictly increasing on the interval $[0, +\infty)$, the order between 200 and 100 is preserved when squaring the values.
- Thus, we conclude:

$$(200)^2 > (100)^2.$$

Ex 14: Compare $(-14.5)^2$ and $(-14)^2$.

$$(-14.5)^2 \ge (-14)^2$$

Expected written answer:

-14.5 < -14 $\Rightarrow (-14.5)^2 > (-14)^2 \quad (x \mapsto x^2 \text{ is strictly decreasing on } (-\infty, 0])$

Answer explanation:

• -14.5 < -14.

- Since the function $x \mapsto x^2$ is strictly decreasing on the interval $(-\infty, 0]$, the order between -14.5 and -14 is reversed when squaring the values.
- Thus, we conclude:

$$(-14.5)^2 > (-14)^2.$$

MCQ 15: Without using a calculator, order the following numbers in ascending order: $\left(\frac{1}{7}\right)^2$, $(-5)^2$, π^2 , $(-1)^2$.

$$\Box \left(\frac{1}{7}\right)^2 < (-5)^2 < \pi^2 < (-1)^2$$
$$\boxtimes \left(\frac{1}{7}\right)^2 < (-1)^2 < \pi^2 < (-5)^2$$

$$\Box \ (-1)^2 < \left(\frac{1}{7}\right)^2 < \pi^2 < (-5)^2$$
$$\Box \ (-5)^2 < (-1)^2 < \left(\frac{1}{7}\right)^2 < \pi^2$$

Answer explanation: Let's analyze the values of the given expressions without using a calculator:

- $\left(\frac{1}{7}\right)^2$: This number is very small because $\frac{1}{7} < 1$, and squaring a number less than 1 gives an even smaller result.
- $(-5)^2$: Squaring -5 gives 25, as $(-5)^2 = (-5) \times (-5) = 25$.
- π^2 : Since $\pi \approx 3.14$, π^2 is slightly greater than 9, approximately 9.86.
- $(-1)^2$: Squaring -1 gives 1, as $(-1)^2 = (-1) \times (-1) = 1$.

Thus, the numbers in ascending order are:

$$\left(\frac{1}{7}\right)^2 < (-1)^2 < \pi^2 < (-5)^2.$$

A.4 DETERMINING AN INTERVAL

Ex 16: Let 3 < x. Determine an interval for x^2

$$9 < x^2$$

Expected written answer:

$$\begin{array}{l} 3 < x \\ \Rightarrow 3^2 < x^2 \quad (x \mapsto x^2 \text{ is strictly increasing on } [0, +\infty)) \\ \Rightarrow 9 < x^2 \end{array}$$

Answer explanation: When solving inequalities involving squares, it's essential to consider how the function behaves depending on the domain of the variable.

- Starting with the given inequality: We know 3 < x.
- Applying the squaring function: The function x → x² is strictly increasing on the interval [0, +∞). Since x > 3, x lies in [0, +∞). Thus, squaring both sides preserves the inequality:
 - $3^2 < x^2$
- Simplifying the inequality:

 $9 < x^{2}$

• Conclusion: The interval for x^2 is $x^2 \in (9, +\infty)$.

Ex 17: Let x < -2. Determine an interval for x^2

$$9 < x^2$$

 $Expected written \ answer:$

$$\begin{aligned} x &< -2 \\ \Rightarrow x^2 > (-2)^2 \quad (x \mapsto x^2 \text{ is strictly decreasing on } (-\infty, 0]) \\ \Rightarrow x^2 > 4 \end{aligned}$$

Answer explanation: When solving inequalities involving squares, it's essential to consider how the function behaves depending on the domain of the variable.

- Starting with the given inequality: We know x < -2.
- Applying the squaring function: The function $x \mapsto x^2$ is strictly decreasing on the interval $(-\infty, 0]$. Since x < -2, squaring both sides flips the inequality direction:

 $x^2 > (-2)^2$

• Simplifying the inequality:

 $x^2 > 4$

- Conclusion: The interval for x^2 is $x^2 \in (4, +\infty)$.
- **Ex 18:** Let $2 < x \leq 5$. Determine an interval for x^2

 $4 < x^2 \leqslant 25$

Expected written answer:

 $\begin{array}{l} 2 < x \leqslant 5 \\ \Rightarrow 2^2 < x^2 \leqslant 5^2 \quad (x \mapsto x^2 \text{ is strictly increasing on } [0, +\infty)) \\ \Rightarrow 4 < x^2 \leqslant 25 \end{array}$

Answer explanation: When solving inequalities involving squares, it's essential to consider how the function behaves depending on the domain of the variable.

- Starting with the given inequality: We know $2 < x \leq 5$.
- Applying the squaring function: The function $x \mapsto x^2$ is strictly increasing on the interval $[0, +\infty)$. Since $2 < x \leq 5$, squaring all terms preserves the inequality:

$$2^2 < x^2 \leqslant 5^2$$

• Simplifying the inequality:

$$4 < x^2 \leqslant 25$$

• Conclusion: The interval for x^2 is $x^2 \in (4, 25]$.

Ex 19: Let $-\sqrt{2} \leq x \leq 0$. Determine an interval for x^2

$$\boxed{0\leqslant x^2\leqslant 2}$$

Expected written answer:

$$-\sqrt{2} \leqslant x \leqslant 0$$

$$\Rightarrow x^2 \leqslant (-\sqrt{2})^2 \quad (x \mapsto x^2 \text{ is decreasing on } (-\infty, 0])$$

$$\Rightarrow 0 \leqslant x^2 \leqslant 2$$

Answer explanation: When solving inequalities involving squares, it's essential to consider how the function behaves depending on the domain of the variable.

- Starting with the given inequality: We know $-\sqrt{2} \leq x \leq 0$.
- Applying the squaring function: The function $x \mapsto x^2$ is strictly decreasing on the interval $(-\infty, 0]$. Since x lies between $-\sqrt{2}$ and 0, squaring both sides gives:

$$0 \leqslant x^2 \leqslant (\sqrt{2})^2$$

• Simplifying the inequality:

$$0 \leqslant x^2 \leqslant 2$$

• Conclusion: The interval for x^2 is $x^2 \in [0, 2]$.

B SQUARE ROOT FUNCTION

B.1 FINDING IMAGES AND ANTECEDENTS

Ex 20: For $f(x) = \sqrt{x}$, fill the table of values:

x	0	1	4		
f(x)	0	1	2		

Answer explanation:

- $f(0) = \sqrt{0}$ substituting x by (0) = 0
- $f(1) = \sqrt{1}$ substituting x by (1) = 1
- $f(4) = \sqrt{4}$ substituting x by (4) = 2

So the table of values is:

x	0	1	4
f(x)	0	1	2

Ex 21: For
$$f(x) = \sqrt{x}$$
,

Answer explanation:

f(25) = 5

$$f(5) = \sqrt{25}$$
$$= \sqrt{5^2}$$

$$=5$$

Ex 22: For
$$f(x) = \sqrt{x}$$

$$f(100) = 10$$

Answer explanation:

$$(100) = \sqrt{100}$$
$$= \sqrt{10^2}$$
$$= 10$$

Ex 23: Let $f(x) = \sqrt{x}$. Find f(-1).

undefined

Answer explanation: The function $f(x) = \sqrt{x}$ is only defined for $x \ge 0$ because the square root of a negative number is not a real number. Therefore, f(-1) is undefined.

B.2 FINDING x SUCH THAT f(x) = k

Ex 24: For $f(x) = \sqrt{x}$, find x such that f(x) = 2.

 $x = \boxed{4}$.

(°±°)

 $Expected \ written \ answer:$

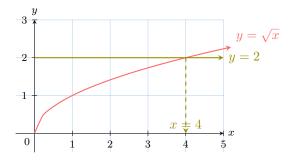
$$f(x) = 2$$

$$\Leftrightarrow \sqrt{x} = 2$$

$$\Leftrightarrow (\sqrt{x})^2 = 2^2 \quad \text{(squaring both sides)}$$

$$\Leftrightarrow x = 2$$

Answer explanation: Graphically, the values of x that satisfy f(x) = 2 are determined as follows:



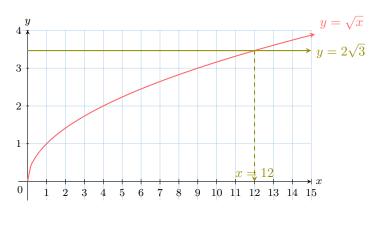
Ex 25: For $f(x) = \sqrt{x}$, find x such that $f(x) = 2\sqrt{3}$.

x = 12.

Expected written answer:

$$\begin{split} f(x) &= 2\sqrt{3} \\ \Leftrightarrow \sqrt{x} &= 2\sqrt{3} \\ \Leftrightarrow \left(\sqrt{x}\right)^2 &= (2\sqrt{3})^2 \quad \text{(squaring both sides)} \\ \Leftrightarrow x &= 2^2 \times (\sqrt{3})^2 \\ \Leftrightarrow x &= 4 \times 3 \\ \Leftrightarrow x &= 12 \end{split}$$

Answer explanation: The value of x that satisfies $f(x) = 2\sqrt{3}$ is found at the intersection of the line $y = 2\sqrt{3}$ with the curve $y = \sqrt{x}$:



Ex 26: For $f(x) = \sqrt{x}$, find x such that $f(x) = \frac{\sqrt{2}}{2}$.

x = 0.5

$$f(x) = \frac{\sqrt{2}}{2}$$
$$\Leftrightarrow \sqrt{x} = \frac{\sqrt{2}}{2}$$

 $\Leftrightarrow \left(\sqrt{x}\right)^2 = \left(\frac{\sqrt{2}}{2}\right)^2$

 $\Leftrightarrow x = \frac{(\sqrt{2})^2}{2^2}$

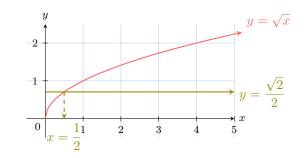
 $\Leftrightarrow x = \frac{2}{4} \\ \Leftrightarrow x = \frac{1}{2}$

 $\Leftrightarrow x = 0.5$

Expected written answer:

(squaring both sides)

Answer explanation: The value of x that satisfies $f(x) = \frac{\sqrt{2}}{2}$ is found at the intersection of the line $y = \frac{\sqrt{2}}{2}$ with the curve $y = \sqrt{x}$:



Ex 27: For $f(x) = \sqrt{x}$, find x such that f(x) = -1.

No solution

 $Expected written \ answer:$

$$f(x) = -1$$
$$\Leftrightarrow \sqrt{x} = -1$$

This equation has no solution, because $\sqrt{x} \ge 0$.

B.3 COMPARING

Ex 28: Compare $\sqrt{2}$ and $\sqrt{3}$.

$$\sqrt{2}$$
 < $\sqrt{3}$

Expected written answer:

$$\begin{array}{l} 2<3\\ \Rightarrow\sqrt{2}<\sqrt{3}\quad (x\mapsto\sqrt{x} \text{ is strictly increasing on } [0,+\infty)) \end{array}$$

Answer explanation:

- 2 < 3.
- Since the function $x \mapsto \sqrt{x}$ is strictly increasing on the interval $[0, +\infty)$, the order between 2 and 3 is preserved under the square root function.
- Thus, we conclude:

$$\sqrt{2} < \sqrt{3}.$$

Ex 29: Compare $\sqrt{100}$ and $\sqrt{99}$.

$$\sqrt{100} \ge \sqrt{99}$$

Expected written answer:

$$\begin{array}{l} 100 > 99 \\ \Rightarrow \sqrt{100} > \sqrt{99} \quad (x \mapsto \sqrt{x} \text{ is strictly increasing on } [0,+\infty)) \end{array}$$

Answer explanation:

- 100 > 99.
- Since the function $x \mapsto \sqrt{x}$ is strictly increasing on the interval $[0, +\infty)$, the order between 100 and 99 is preserved under the square root function.
- Thus, we conclude:

$$\sqrt{100} > \sqrt{99}.$$

Ex 30: Compare $\sqrt{\pi}$ and $\sqrt{3}$.

$$\sqrt{\pi} > \sqrt{3}$$

Expected written answer:

$$\begin{aligned} \pi &> 3 \\ \Rightarrow \sqrt{\pi} &> \sqrt{3} \quad (x \mapsto \sqrt{x} \text{ is strictly increasing on } [0, +\infty)) \end{aligned}$$

 $\ Answer \ explanation:$

• $\pi > 3$.

- Since the function $x \mapsto \sqrt{x}$ is strictly increasing on the interval $[0, +\infty)$, the order between π and 3 is preserved under the square root function.
- Thus, we conclude:

 $\sqrt{\pi} > \sqrt{3}.$

C CUBE FUNCTION

C.1 FINDING IMAGES AND ANTECEDENTS

Ex 31: For $f(x) = x^3$, fill the table of values:

x	-2	-1	-1 0 1		2
f(x)	-8	-1	0	1	8

Answer explanation:

- $f(-2) = (-2)^3$ substituting x by (-2) = -8
- $f(-1) = (-1)^3$ substituting x by (-1)= -1
- $f(0) = (0)^3$ substituting x by (0) = 0
- $f(1) = (1)^3$ substituting x by (1) = 1

•
$$f(2) = (2)^3$$
 substituting x by (2)
= 8

So the table of values is:

x	-2	-1	0	1	2
f(x)	-8	-1	0	1	8

Ex 32: For $f(x) = x^3$,

f(10) = 1000

 $\ Answer \ explanation:$

$$f(10) = (10)^3 = 1\,000$$

Ex 33: For $f(x) = x^3$,

$$f(-5) = -125$$

 $f(-5) = (-5)^3$

 $Answer \ explanation:$

$$= -125$$

Ex 34: For
$$f(x) = x^3$$
,

$$f(-3) = \boxed{-27}$$

 $Answer \ explanation:$

$$f(-3) = (-3)^{\circ}$$

= -27

D INVERSE FUNCTION

D.1 FINDING IMAGES AND ANTECEDENTS

Ex 35: For $f(x) = \frac{1}{x}$, fill the table of values:

x	-2		-1		-0.5		0.5		1	
f(x)		-0.5	-1		-2		2		1	

 $\ Answer \ explanation:$

•
$$f(-2) = \frac{1}{-2}$$
 substituting x by (-2)
= -0.5

•
$$f(-1) = \frac{1}{-1}$$
 substituting x by (-1)
= -1

• $f(-0.5) = \frac{1}{-0.5}$ substituting x by (-0.5) = -2

•
$$f(0.5) = \frac{1}{0.5}$$
 substituting x by (0.5)
= 2

•
$$f(1) = \frac{1}{1}$$
 substituting x by (1)
= 1

•
$$f(2) = \frac{1}{2}$$
 substituting x by (2)
= 0.5

(°±°)

So the table of values is:

Ex 36: For $f(x) = \frac{1}{x}$,

$$f\left(\frac{1}{2}\right) = \boxed{2}$$

Answer explanation:

$$f\left(\frac{1}{2}\right) = \frac{1}{\frac{1}{2}}$$
$$= 1 \times \frac{2}{1}$$
$$= 2$$

D.2 FINDING x SUCH THAT f(x) = k

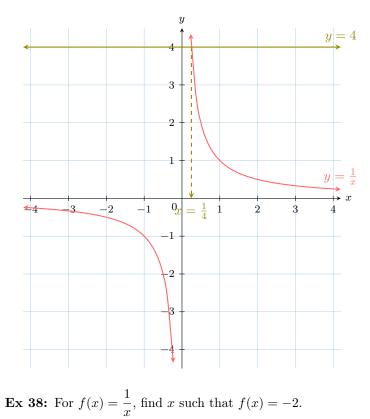
Ex 37: For
$$f(x) = \frac{1}{x}$$
, find x such that $f(x) = 4$.

$$x = \boxed{\frac{1}{4}}.$$

 $Expected \ written \ answer:$

$$\begin{split} f(x) &= 4 \\ \Leftrightarrow \frac{1}{x} &= 4 \\ \Leftrightarrow x \times 4 &= 1 \qquad (\text{cross-multiplication}) \\ \Leftrightarrow x &= \frac{1}{4} \qquad (\text{divide both sides by 4}) \end{split}$$

Answer explanation: Graphically, the value of x that satisfies f(x) = 4 is determined as follows:



 $Expected \ written \ answer:$

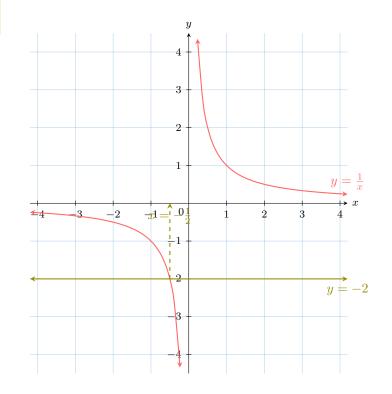
$$f(x) = -2$$

$$\Leftrightarrow \frac{1}{x} = -2$$

$$\Leftrightarrow x \times (-2) = 1 \qquad (\text{cross-multiplication})$$

$$\Leftrightarrow x = -\frac{1}{2} \qquad (\text{divide both sides by } -2)$$

Answer explanation: Graphically, the value of x that satisfies f(x) = -2 is determined as follows:



Ex 39: For
$$f(x) = \frac{1}{x}$$
, find x such that $f(x) = \frac{2}{3}$

 $x = \boxed{\frac{3}{2}}$

Expected written answer:

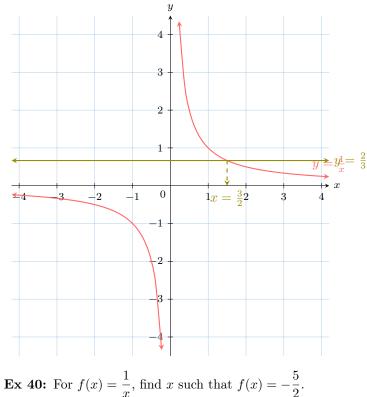
$$f(x) = \frac{2}{3}$$

$$\Leftrightarrow \frac{1}{x} = \frac{2}{3}$$

$$\Leftrightarrow x \times 2 = 1 \times 3 \qquad \text{(cross-multiplication)}$$

$$\Leftrightarrow x = \frac{3}{2} \qquad \text{(divide both sides by 3)}$$

Answer explanation: Graphically, the value of x that satisfies $f(x) = \frac{2}{3}$ is determined as follows:



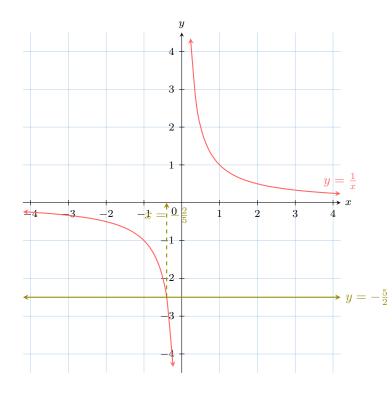
Ex 40: For
$$f(x) = \frac{1}{x}$$
, find x such that $f(x) = -\frac{5}{2}$

x =

$$\begin{split} f(x) &= -\frac{5}{2} \\ \Leftrightarrow \frac{1}{x} &= -\frac{5}{2} \\ \Leftrightarrow x \times 5 &= -1 \times 2 \qquad \text{(cross-multiplication)} \\ \Leftrightarrow x &= -\frac{2}{5} \qquad \text{(divide both sides by 5)} \end{split}$$

 $\frac{2}{5}$

Answer explanation: Graphically, the value of x that satisfies $f(x) = -\frac{5}{2}$ is determined as follows:



D.3 COMPARING

Ex 41: Compare
$$\frac{1}{20}$$
 and $\frac{1}{100}$.
 $\frac{1}{20} \ge$

$$\frac{20 < 100}{\frac{1}{20} > \frac{1}{100}}$$

1

100

Answer explanation:

- 20 < 100.
- Since the function $x \mapsto \frac{1}{x}$ is strictly decreasing on the interval $[0, +\infty)$, the reciprocal reverses the order of 20 and 100.
- Thus, we conclude:

$$\frac{1}{20} > \frac{1}{100}.$$

Ex 42: Compare
$$\frac{1}{\sqrt{2}}$$
 and $\frac{1}{2}$.

$$\frac{1}{\sqrt{2}} \ge \frac{1}{2}$$

 $Expected \ written \ answer:$

$$\sqrt{2} > 2$$

so $\frac{1}{\sqrt{2}} < \frac{1}{2}$

Answer explanation:

- $\sqrt{2} > 2$, so $\frac{1}{\sqrt{2}} < \frac{1}{2}$ because the reciprocal of a larger number is smaller.
- Thus, we conclude:

$$\frac{1}{\sqrt{2}} < \frac{1}{2}.$$

Ex 43: Compare
$$-\frac{1}{20}$$
 and $-\frac{1}{19}$.

$$\frac{1}{20} \left[< \right] - \frac{1}{19}$$

Expected written answer:

$$-\frac{1}{20} < -\frac{19}{19}$$

 $-\frac{1}{20} > -\frac{1}{19}$

10

20 -

Answer explanation:

- -20 < -19.
- Since the function $x \mapsto \frac{1}{x}$ is strictly decreasing on the interval $(-\infty, 0]$, the reciprocal reverses the order of -20and -19.
- Thus, we conclude:

$$-\frac{1}{20} > -\frac{1}{19}$$

Ex 44: Compare
$$\frac{1}{\sqrt{2}}$$
 and $\frac{1}{\sqrt{3}}$.

$$\frac{1}{\sqrt{2}} \ge \frac{1}{\sqrt{3}}$$

 $Expected \ written \ answer:$

$$\sqrt{2} < \sqrt{3}$$

so $\frac{1}{\sqrt{2}} > \frac{1}{\sqrt{3}}$.

Answer explanation:

- $\sqrt{2} < \sqrt{3}$, so $\frac{1}{\sqrt{2}} > \frac{1}{\sqrt{3}}$ because the reciprocal of a smaller number is larger.
- Thus, we conclude:

$$\frac{1}{\sqrt{2}} > \frac{1}{\sqrt{3}}.$$