REASONING AND PROOF

A.1.2 DEDUCING TRUTH VALUES **LOGICAL CONNECTIVES** AND **PROPOSITIONS** MCQ 8: Given that the proposition "x > 5" is True, state the truth value of the proposition "x > 2". A.1 PROPOSITION ☐ True □ False A.1.1 DETERMINING TRUTH VALUES ☐ Cannot be determined MCQ 1: State the truth value of the following proposition: MCQ 9: Given that the proposition "n is a prime number" 1 = 0is True, state the truth value of the proposition "n is an odd □ True number". □ False ☐ True □ False MCQ 2: State the truth value of the following proposition: □ Cannot be determined 5 - 2 = 3MCQ 10: Given that the proposition "ABCD is a rhombus" □ True is True, state the truth value of the proposition "ABCD is a □ False square". □ True MCQ 3: State the truth value of the following proposition: □ False "9 is a prime number." \square Cannot be determined ☐ True MCQ 11: Given that the proposition "x is a multiple of 4" is □ False True, state the truth value of the proposition "x is a multiple of 2". MCQ 4: State the truth value of the following proposition: □ True "The derivative of x^3 is $3x^2$." □ False □ True ☐ Cannot be determined □ False A.2 NEGATION MCQ 5: State the truth value of the following proposition: $(x+y)^2 = x^2 + y^2$ for all $x, y \in \mathbb{R}$ A.2.1 FINDING THE NEGATION OF A PROPOSITION ☐ True MCQ 12: Find the negation of the proposition "x = 3". \square False $\square x = -3$ $\square \ x \neq 3$ MCQ 6: State the truth value of the following proposition: $\square x < 3$ $\mathbb{N} \subset \mathbb{Z}$ $\square x > 3$ (The set of natural numbers is a subset of the set of integers.) □ True MCQ 13: Find the negation of the proposition " $x \ge 0$ ". □ False $\Box x > 0$ $\Box x < 0$ MCQ 7: State the truth value of the following proposition: $\square x \leq 0$ $\int \ln(x) \, dx = \frac{1}{x} + C$ $\Box x \neq 0$ □ True MCQ 14: Find the negation of the proposition "x < -2".

 $\square x > -2$

□ False

	MCQ 21: Let p be the proposition " $\sqrt{9} = 3$ " and q be the proposition "A square has 5 sides". What is the truth value of the disjunction $p \lor q$?
$\Box x \ge -2$	□ True
MCQ 15: Find the negation of the proposition "All students	□ False
in the class have black hair."	\Box Cannot be determined
$\hfill\Box$ "No students in the class have black hair."	MCQ 22: Let p be the proposition " π is a rational number"
$\hfill\Box$ "All students in the class do not have black hair."	and q be the proposition " $5 < 4$ ". What is the truth value of the conjunction $p \wedge q$?
$\hfill\Box$ "There is at least one student in the class who does not have black hair."	□ True
black flaff.	□ False
MCQ 16: Find the negation of the proposition " $x \in \mathbb{Q}$ " (x is a rational number).	\Box Cannot be determined
\square "x is an integer."	MCQ 23: Let p be "A triangle has three sides" and q be
\square "x is a real number."	"-1 > 0". What is the truth value of the disjunction $p \lor q$?
\square "x is an irrational number."	□ False
\square "x is a natural number."	☐ Cannot be determined
A.2.2 DEDUCING TRUTH VALUES	A.3.2 NEGATING CONJUNCTIONS AND
MCQ 17: Given that the proposition " $x = 1$ " is False, state	DISJUNCTIONS
the truth value of the proposition " $x \neq 1$ ". \Box True	MCQ 24: Which of the following is the negation of the proposition " $x > 0$ and x is an integer"?
□ False	\Box " $x < 0$ and x is not an integer"
□ Cannot be determined	\Box " $x > 0$ or x is not an integer"
	\square " $x \le 0$ or x is not an integer"
MCQ 18: Given that the proposition "All students succeeded in the exam" is False, state the truth value of the proposition "At least one student did not succeed in the exam".	\Box " $x \le 0$ and x is not an integer"
□ True	MCQ 25: Which of the following is the negation of the proposition "The shape is a circle or the shape is red"?
□ False	$\hfill\Box$ "The shape is not a circle or the shape is not red"
☐ Cannot be determined	\Box "The shape is a circle and the shape is not red"
	\Box "The shape is not a circle and the shape is red"
MCQ 19: Given that the proposition " $x \ge 1$ " is False, state the truth value of the proposition " $x = 0$ ".	\Box "The shape is not a circle and the shape is not red"
☐ True	MCQ 26: Which of the following is the negation of the proposition " $-2 \le x < 3$ "?
□ False	$\square "x < -2 \text{ and } x \ge 3"$
☐ Cannot be determined	
A.3 COMPOUND PROPOSITIONS	\square " $x \le -2$ or $x > 3$ "
	\square " $x > -2$ and $x < 3$ "
A.3.1 EVALUATING COMPOUND PROPOSITIONS	MCQ 27: Which of the following is the negation of the
MCQ 20: Let p be the proposition " $(-2)^2 = 4$ " and q be	proposition " $x < 0$ or $x \ge 2$ "?
the proposition " $-2 < -3$ ". What is the truth value of the conjunction $p \wedge q$?	$\square "x > 0 \text{ or } x \le 2"$
□ True	$\square "x \ge 0 \text{ or } x < 2"$
□ False	$\square "x \ge 0 \text{ and } x < 2"$
☐ Cannot be determined	\square " $x > 0$ and $x \le 2$ "

2

www.commeunjeu.com

A.4 IMPLICATION AND EQUIVALENCE

A.4.1 IDENTIFYING RELATED IMPLICATIONS

MCQ 28: What is the converse of the proposition "If a shape is a square, then it is a rectangle"? □ "If a shape is not a square, then it is not a rectangle." □ "If a shape is not a rectangle, then it is not a square." \square "If a shape is a rectangle, then it is a square." □ "A shape is a square if and only if it is a rectangle." Which of the following propositions is the MCQ 29: contrapositive of "If x is a multiple of 6, then x is an even number"? \square "If x is an even number, then x is a multiple of 6." \square "If x is not an even number, then x is not a multiple of 6." \square "If x is not a multiple of 6, then x is not an even number." \square "x is a multiple of 6 and x is not an even number." MCQ 30: What is the inverse of the proposition "If x=2, then $x^2 = 4$ "? \Box "If $x^2 = 4$, then x = 2." \square "If $x^2 \neq 4$, then $x \neq 2$." \square "If $x \neq 2$, then $x^2 \neq 4$." \square "x=2 and $x^2 \neq 4$." MCQ 31: What is the contrapositive of the proposition "If a function is differentiable, then it is continuous"? \square "If a function is continuous, then it is differentiable." □ "If a function is not differentiable, then it is not continuous." □ "A function is differentiable and it is not continuous." □ "If a function is not continuous, then it is not differentiable." MCQ 32: What is the inverse of the proposition "If an integer is a multiple of 10, then it is a multiple of 5"? □ "If an integer is a multiple of 5, then it is a multiple of 10." □ "If an integer is not a multiple of 10, then it is not a multiple of 5." □ "If an integer is not a multiple of 5, then it is not a multiple of 10." □ "An integer is a multiple of 10 and it is not a multiple of 5."

A.4.2 WRITING THE CONVERSE AND CONTRAPOSITIVE

 \mathbf{Ex} 33: Consider the proposition: "If a shape is a square, then it is a rectangle."

- 1. Write the converse of the proposition.
- 2. Write the contrapositive of the proposition.

Ex 34: Consider the proposition: "If x is a multiple of 6, then x is an even number."

- 1. Write the converse of the proposition.
- 2. Write the contrapositive of the proposition.

Ex 35: Consider the proposition: "If x = 2, then $x^2 = 4$."

- 1. Write the converse of the proposition.
- 2. Write the contrapositive of the proposition.

A.4.3 TRANSLATING STATEMENTS INTO IMPLICATIONS

Ex 36: Rewrite the following statement in the form of a logical implication by completing the sentence below.

"The sum of two even integers is an even integer."

If a and b are even integers, then

Ex 37: Rewrite the following statement in the form of a logical implication by completing the sentence below.

"All prime numbers greater than 2 are odd."

Complete the sentence:	$\square \ \exists n \in \mathbb{N},$	$n \le 0$		
If a number n is a prime number and $n > 2$, then \dots	$\square \ \exists n \in \mathbb{N},$	n > 0		
Ex 38: Rewrite the following statement in the form of a logical implication by completing the sentence below.			e following is the neg nbers are even"? re odd."	ation of the
"The square of any real number is non-negative."	□ "All priı	me numbers are	even."	
Complete the sentence:	□ "All prii	me numbers are	odd."	
If x is a real number, then				
A.5 QUANTIFIERS		INSLATING IED FORM	STATEMENTS	INTO
A.5.1 EVALUATING QUANTIFIED STATEMENTS		te the following sy real number is	statement using a qua non-negative."	ntifier: "The
MCQ 39: Let $A = \{2, 4, 6, 8\}$. Which of the following propositions is true?				
$\square \ \forall x \in A, x \text{ is a multiple of 4.}$				
$\square \exists x \in A, x \text{ is an odd number.}$				
$\square \ \forall x \in A, x \text{ is an even number.}$			tatement using a quant	
$\Box \ \exists x \in A, x > 10.$	exists an inte	eger that is a mu	altiple of both 2 and 3.	"
MCQ 40: Let \mathbb{Z} be the set of integers. Which of the following propositions is true?				
$\square \ \forall n \in \mathbb{Z}, n^2 > 0.$				
$\Box \ \exists n \in \mathbb{Z}, n+1=n.$	Ex 47: Wr	rite the following	g statement using qu	antifiers and
$\square \ \forall n \in \mathbb{Z}, \sqrt{n}$ is a real number.	a logical con $x^2 > 1$."	mector: "For ev	very real number x , if	x > 1 then
$\square \ \exists n \in \mathbb{Z}, n^2 = n.$	<i>x</i> > 1.			
MCQ 41: Let P be the set of all prime numbers. Which of the following propositions is true?				
$\square \ \forall x \in P, x+1 \text{ is a composite number.}$				
$\square \ \forall x \in P, x \text{ is an odd number.}$	B WRIT	TEN PROO	F	
$\square \exists x \in P, x \text{ is an even number.}$				
$\square \ \forall x \in P, x+2 \text{ is a prime number.}$	B.1 STRU	JCTURE FOR V	VRITTEN PROOFS	
A F O NIEGATING QUANTIFIED STATEMENTS	B.1.1 ANA	ALYZING PROC	F STRUCTURES	
A.5.2 NEGATING QUANTIFIED STATEMENTS	MCO 48:	In a direct prop	f of the implication "I	f n is an odd
MCQ 42: Which of the following is the negation of the proposition " $\exists x \in \mathbb{R}, x^2 = -1$ "?			n integer", what is the	
$\Box \ \exists x \in \mathbb{R}, x^2 \neq -1$	☐ Assume	that $n+1$ is an	odd integer.	
$\Box \ \exists x \in \mathbb{R}, x^2 > -1$	☐ Assume	that n is an even	n integer.	
$\Box \ \forall x \in \mathbb{R}, x^2 = -1$	☐ Assume	that n is an odd	l integer.	
$\Box \ \forall x \in \mathbb{R}, x^2 \neq -1$	□ Assume	that $n+1$ is an	even integer.	
MCQ 43: Which of the following is the negation of the proposition " $\forall n \in \mathbb{N}, n \geq 0$ "?			to prove the statemen	t: "If n is an

(j

odd integer, then n+1 is an even integer. "Below is the ${\bf Student's}$

 $\square \ \forall n \in \mathbb{N}, n < 0$

 $\square \ \exists n \in \mathbb{N}, n < 0$

 ${\bf Proof\ Attempt}.$

1. Assume n is an even integer.

3. Then $n+1=2k+1=2(k+1)$.	\square "Assume x is a positive number."
4. Therefore, $n+1$ is an even integer.	
Identify the errors in the student's reasoning and write a correct	\square "Let x be a real number."
version.	\square "For some real number x ."
	MCQ 52: A student begins a proof with the sentence: "Let k be an integer such that $k > 10$." Which statement is the student most likely trying to prove?
	\square For all integers k , if $k > 10$, then $k^2 > 100$.
	\Box There exists an integer k such that $k > 10$.
	\square For all integers $k, k^2 > 100$.
	\Box If $k^2 > 100$, then $k > 10$.
	Ex 53: A student was asked to prove the statement: "If n is an even integer, then n^2 is divisible by 4." Below is the Student's Proof Attempt .
	1. Let $n = 4$.
Ex 50: A student was asked to prove the statement: "If n is an even integer, then n^2 is an even integer." Below is the Student's Proof Attempt .	2. Then $n^2 = 4^2 = 16$.
1. Assume n is an odd integer.	3. Since 16 is divisible by 4, the statement is true.
2. By definition, there exists an integer k such that $n = 2k + 1$.	Identify the errors in the student's reasoning and write a correct
3. Then $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.	version.
4. Therefore, n^2 is an even integer.	
Identify the errors in the student's reasoning and write a correct version.	

 \square "Let $x^2 \ge 0$."

B.2 INTRODUCING A VARIABLE

B.2.1 STRUCTURING A PROOF

MCQ 51: Which of the following is the correct first sentence for a direct proof of the statement "For all real numbers $x, x^2 \ge 0$ "?

2. By definition, there exists an integer k such that n=2k.

_

C METHODS OF PROOF

C.1.1 WRITING DIRECT PROOFS IN ARITHMETIC

C.1 DIRECT PROOF (PROOF BY DEDUCTION)

Ex 54: Use a direct proof to show that the product of two odd integers is an odd integer.

Ex 55: Use a direct proof to show that if an integer is divisible by 6, then it is divisible by 3.	C.1.2 CONSTRUCTING DIRECT PROOFS IN VARIOUS CONTEXTS
	Ex 58: Use a direct proof to show that if a triangle is equilateral, then it is isosceles.
Ex 56: Use a direct proof to show that the sum of an even integer and an odd integer is an odd integer.	Ex 59: Use a direct proof to show that if a function is linear, then its square is a quadratic function.

Ex 57: Use a direct proof to show that if an integer a divides a direct proof to show that if $a \subseteq B$ and $a \subseteq C$, both integers a and a divides their difference a divides a direct proof to show that if $a \subseteq B$ and a divides their difference a divides a direct proof to show that if $a \subseteq B$ and a divides a direct proof to show that if $a \subseteq B$ and a divides a direct proof to show that if a divides a direct proof to show that if a divides a direct proof to show that if a divides a direct proof to show that if a divides a direct proof to show that if a divides a direct proof to show that if a divides a direct proof to show that if a divides a divides a direct proof to show that if a divides a d

	1
Ex 61: Use a direct proof to show that if a function $f(x)$ is odd, then the function $g(x) = [f(x)]^2$ is even.	Ex 64: Use a direct proof to show that for all real numbers a and b : $\frac{a^2 + b^2}{2} \ge ab$
C.1.3 CONSTRUCTING DIRECT PROOFS: PROVING A STATEMENT IS TRUE	C.2 PROOF BY CONTRAPOSITIVE
Ex 62: Use a direct proof to show that $0.111 \cdots \in \mathbb{Q}$	C.2.1 CONSTRUCTING PROOFS BY CONTRAPOSITIVE
	Ex 65: Use proof by contrapositive to show that if n^2 is an even integer, then n is an even integer.
Ex 63: Use a direct proof to show that $0.151515\cdots \in \mathbb{Q}$.	Ex 66: Use proof by contrapositive to show that for integers x and y , if xy is even, then at least one of x or y is even.

www.commeunjeu.com 7

	_
Ex 67: Use proof by contrapositive to show that if the product of two real numbers, a and b , is irrational, then at least one of a or b must be irrational.	Ex 70: Use proof by exhaustion to show that for any integer n , $n(n+1)$ is an even number.
	Ex 71: Use proof by exhaustion to show that for any integer n , $n^3 - n$ is divisible by 3.
C.3 PROOF BY EXHAUSTION (CASES)	
C.3.1 CONSTRUCTING PROOFS BY EXHAUSTION	
Ex 68: Use proof by exhaustion to show that for any proposition p , the statement " $p \lor (\neg p)$ " is always true. (This is known as the Law of the Excluded Middle).	C.4 DISPROOF BY COUNTEREXAMPLE C.4.1 DISPROVING STATEMENTS BY COUNTEREXAMPLE Ex 72: Disprove the following statement by finding a
Ex 69: Use proof by exhaustion to show that for any set A , $A \cap A' = \emptyset$. (A' denotes the complement of A).	counterexample: "For all real numbers a and b , $\sqrt{a^2+b^2}=a+b$."

www.commeunjeu.com 8

Ex 73: Disprove the following statement by finding a counterexample: $\text{"For all real numbers } x, x = x. \text{"}$	
]L
	Ex 76: Prove that for any real number x , the following equivalence is true:
	$x^2 - 4x + 3 = 0$ if and only if $x = 1$ or $x = 3$.
Ex 74: Disprove the following statement by finding a counterexample:	
"For any integer n , if n is divisible by 2, then n is divisible by	
4."	
C.5 PROOF BY EQUIVALENCE	Ex 77: Prove that for an integer n , the following equivalence is true:
C 5 1 CONSTRUCTING PROOFS OF FOUNDALENCE	

Ex 75: Prove that for an integer n, the following equivalence is true:

"n is odd if and only if n+1 is even."

" n^2 is a multiple of 4 if and only if n is a multiple of 2 (i.e., even)."

 $\mathbf{Ex}\ \mathbf{81:}\ \mathbf{The}\ \mathbf{following}\ \mathbf{"proof"}\ \mathbf{by}\ \mathbf{equivalence}\ \mathbf{leads}\ \mathbf{to}\ \mathbf{the}\ \mathbf{absurd}$ conclusion that 2 = 1. Identify the incorrect step and explain

Ex 78: Prove that for any real number x where $x \neq 0$, the following equivalence is true:

"
$$x + \frac{1}{x} = 2$$
 if and only if $x = 1$."

C.5.2 CONSTRUCTING AND ANALYZING PROOFS BY **EQUIVALENCE FOR IDENTITIES**

Ex 79: Prove that

$$\forall a, b \in \mathbb{R} : (a+b)^2 - (a-b)^2 = 4ab$$

Ex 80: Prove that $\forall a, b \in \mathbb{R} : (a+b)^2 + (a-b)^2 = 2(a^2 + b^2)$.

the error in the reasoning. a = b $a^2 = ab$ \Leftrightarrow

$$a = b$$

$$\Leftrightarrow a^2 = ab$$

$$\Leftrightarrow a^2 - b^2 = ab - b^2$$

$$\Leftrightarrow (a - b)(a + b) = b(a - b)$$

$$\Leftrightarrow a + b = b$$

$$\Leftrightarrow 2a = a$$

$$\Leftrightarrow 2 = 1$$

Ex 82: The following "proof" by equivalence leads to the absurd conclusion that 1 = 0. Identify the incorrect step and explain the error in the reasoning.

$$a = -\frac{1}{2}$$

$$\Leftrightarrow 2a = -1$$

$$\Leftrightarrow 2a + 1 = 0$$

$$\Leftrightarrow a^2 + 2a + 1 = a^2$$

$$\Leftrightarrow (a+1)^2 = a^2$$

$$\Leftrightarrow a + 1 = a$$

$$\Leftrightarrow 1 = 0$$

C.6 PROOF BY CONTRADICTION

C.6.1 ANALYZING THE STRUCTURE OF PROOF BY **CONTRADICTION**

MCQ 83: When proving by contradiction the statement " $\sqrt{2}$ is irrational", what is the correct initial assumption?

\square Assume that $\sqrt{2}$ is a real number.	
\square Assume that $\sqrt{2}$ is a rational number.	
\square Assume that $\sqrt{2}$ is an irrational number.	
\square Assume that $x^2 = 2$ has no solution.	
MCQ 84: When proving by contradiction the statement " $\sqrt{2}$ is irrational", what is the final conclusion of the proof?	
\Box "The initial assumption that $\sqrt{2}$ is rational must be true."	
\Box "The final contradiction proves that $\sqrt{2}$ is rational."	C.7 PROOF BY MATHEMATICAL INDUCTION
\Box "The argument contains a flaw, so no conclusion can be made."	C.7.1 PROVING INEQUALITIES BY INDUCTION
\Box "The initial assumption that $\sqrt{2}$ is rational must be false."	Ex 88: Use proof by mathematical induction to show that $2^n > n$ for all $n \in \mathbb{Z}^+$.
C.6.2 CONSTRUCTING PROOFS BY CONTRADICTION Ex 85: Prove that log ₃ 5 is an irrational number.	
	Ex 89: Use proof by mathematical induction to show that $n^2 \ge 2n$ for all integers $n \ge 2$.
Ex 86: Prove that $\log_2 3$ is an irrational number.	

Ex 87: Prove that $\sqrt{2}$ is an irrational number.

 $\mathbf{Ex}\ \mathbf{90:}\ \mathbf{Use}\ \mathbf{proof}\ \mathbf{by}\ \mathbf{mathematical}\ \mathbf{induction}\ \mathbf{to}\ \mathbf{show}\ \mathbf{that}\ \mathbf{for}$

any real number $a \ge 0$,

 $(1+a)^n \ge 1 + na$ for all integers $n \ge 0$

C.7.2 PROVING SUMS OF POWERS BY INDUCTION

Ex 91: Prove by mathematical induction that for all $n \in \mathbb{Z}^+$, $1+2+\cdots+n=\frac{n(n+1)}{2}$.

Ex 92: Prove that for all $n \in \mathbb{Z}^+$,

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

C.7.3 PROVING SEQUENCE PROPERTIES BY INDUCTION

Ex 94: A sequence is defined by $u_0 = 2$ and the recurrence relation $u_{n+1} = \frac{u_n}{3} + 2$ for all $n \in \mathbb{N}$.

Prove that the sequence (u_n) is increasing, i.e., that $u_{n+1} \ge u_n$ for all $n \in \mathbb{N}$.

Ex 93: Prove that for all $n \in \mathbb{Z}^+, 1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$.

Ex 95: A sequence is defined by $u_1 = 1$ and the recurrence relation $u_{n+1} = \sqrt{u_n + 2}$ for all $n \in \mathbb{Z}^+$.

Prove that the sequence (u_n) is bounded above by 2, i.e., that $u_n \leq 2$ for all $n \in \mathbb{Z}^+$.

Ex	x 98: Prove that $n^3 + 2n$ is divisible by 3 for all integers $n \ge 1$.
Ex 96: A sequence is defined by $u_0 = 5$ and the recurrence elation $u_{n+1} = 2u_n - 3$ for all $n \in \mathbb{N}$. Prove that $u_n = 2^{n+1} + 3$ for all $n \in \mathbb{N}$.	
Ex	x 99: Prove that $7^n - 1$ is divisible by 6 for all integers $n \ge 1$.
C.7.4 PROVING DIVISIBILITY PROPERTIES BY INDUCTION	

Ex 97: Prove that $3^n + 1$ is divisible by 2 for all integers $n \ge 0$.