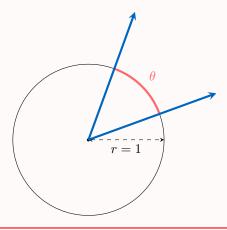
RADIANS AND THE UNIT CIRCLE

A RADIAN MEASURE

The measure of an angle describes what fraction of a full revolution it represents. While degrees (360° in a circle) are a common unit, they are an arbitrary human invention. A more mathematically natural unit is the **radian**.

Definition Radian Measure

The radian measure of an angle θ is defined as the length of the arc it subtends on a unit circle (a circle with radius 1).



Proposition Angle of a Full Circle

The circumference of a unit circle is $C = 2\pi(1) = 2\pi$. Therefore, a full circle contains 2π radians. This establishes the fundamental conversion: $360^{\circ} = 2\pi$ radians, which simplifies to $180^{\circ} = \pi$ radians.

 $2\pi \text{ rad} = 360^{\circ}$

Method Converting Between Degrees and Radians

Based on the relationship $180^{\circ} = \pi$ radians:

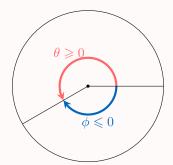
- To convert from degrees to radians, multiply by $\frac{\pi}{180}$.
- To convert from radians to degrees, multiply by $\frac{180}{\pi}$.

Ex: Convert 60° to radians.

Answer:
$$60^{\circ} = 60^{\circ} \times \frac{\pi}{180^{\circ}}$$
$$= \frac{\pi}{3}$$

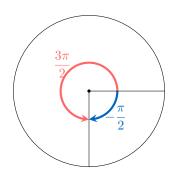
Definition Positive and Negative Angles -

- A positive angle measure represents a counterclockwise rotation.
- A negative angle measure represents a clockwise rotation.

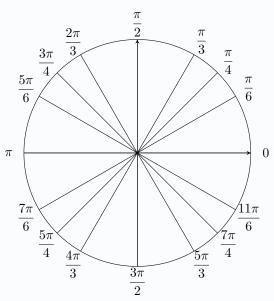


Ex: Draw the angles $\frac{3\pi}{2}$ and $-\frac{\pi}{2}$.

Answer:



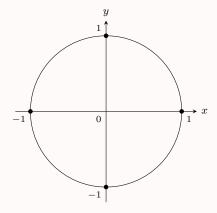
Proposition Reference Angles on the Unit Circle



B TRIGONOMETRY ON THE UNIT CIRCLE

Definition Unit circle

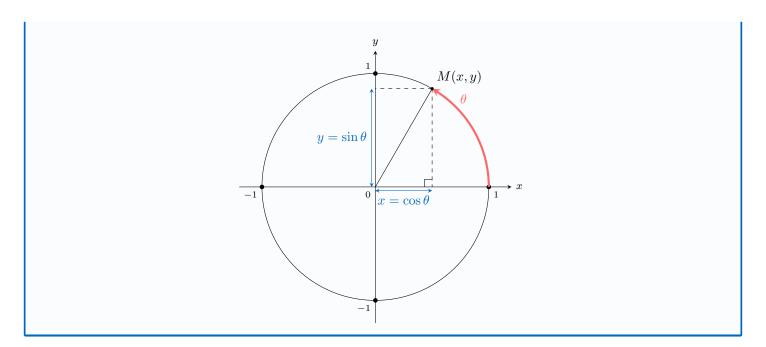
The unit circle is a circle with a radius of 1 centered at the origin.



Proposition Relationship between Angle and Coordinates

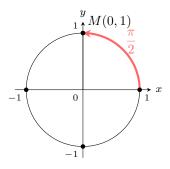
For any angle θ , measured counterclockwise from the positive x-axis, the corresponding point M(x,y) on the circle defines the values of cosine and sine.

- The x-coordinate is the cosine of the angle: $\cos \theta = x$
- The y-coordinate is the sine of the angle: $\sin \theta = y$



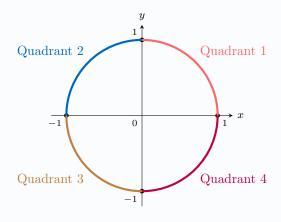
Ex: Find the values $\cos\left(\frac{\pi}{2}\right)$ and $\sin\left(\frac{\pi}{2}\right)$.

Answer: On the unit circle, the point corresponding to the angle $\frac{\pi}{2}$ has coordinates (0,1):



$$\cos\left(\frac{\pi}{2}\right) = 0 \quad x\text{-coordinate}$$
$$\sin\left(\frac{\pi}{2}\right) = 1 \quad y\text{-coordinate}$$

Proposition Sign of Sine and Cosine



Quadrant	$\cos \theta$	$\sin \theta$
1	+	+
2	_	+
3	_	_
4	+	1

C TRIGONOMETRIC IDENTITIES

Proposition Pythagorean Identity -

For any angle θ :

$$\cos^2\theta + \sin^2\theta = 1$$

Proposition Maximum and Minimum of Trigonometric Ratios

$$-1 \leqslant \cos \theta \leqslant 1$$
 and $-1 \leqslant \sin \theta \leqslant 1$

Proposition **Periodicity Identity**

For any angle θ and any integer k:

$$\cos(\theta + 2k\pi) = \cos\theta$$
 and $\sin(\theta + 2k\pi) = \sin\theta$

Proposition Add π to Trigonometric Ratios

Reflection through the origin:

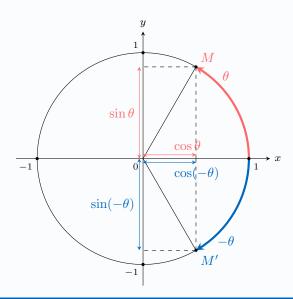
$$\sin(\pi + \theta) = -\sin\theta$$
$$\cos(\pi + \theta) = -\cos\theta$$



Proposition Opposite of Trigonometric Ratios

Reflection in the x-axis:

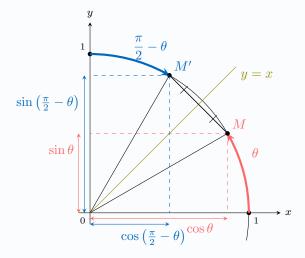
$$\sin(-\theta) = -\sin\theta$$
$$\cos(-\theta) = \cos\theta$$



Proposition Identities with $\frac{\pi}{2} - \theta$

Reflection across the line y = x:

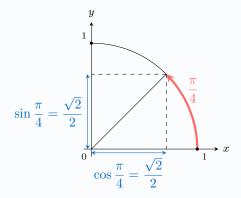
$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$
$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$



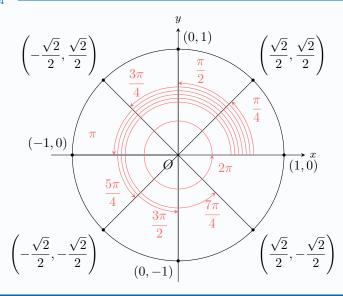
D MULTIPLES OF $\frac{\pi}{4}$

Proposition Coordinates for Angle $\frac{\pi}{4}$

$$\cos\frac{\pi}{4} = \frac{\sqrt{2}}{2} \quad \text{and} \quad \sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}$$



Proposition Multiples of $\frac{\pi}{4}$



The signs of the coordinates are determined by the quadrant in which the angle lies.

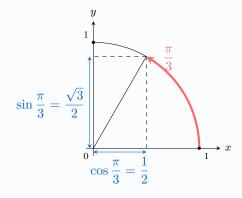
Ex: Find $\cos \frac{3\pi}{4}$.

Answer: $\cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2}$

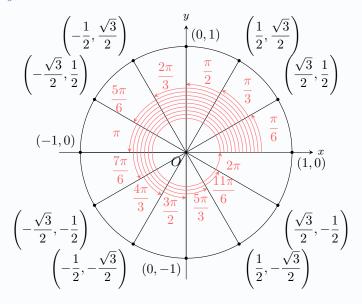
E MULTIPLES OF $\frac{\pi}{6}$

Proposition Coordinates of Angle $\frac{\pi}{3}$

$$\cos\frac{\pi}{3} = \frac{1}{2}$$
 and $\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$

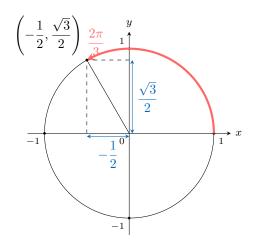


Proposition Multiples of $\frac{\pi}{6}$



Ex: Find $\cos \frac{2\pi}{3}$ and $\sin \frac{2\pi}{3}$.

Answer:



 $\cos\frac{2\pi}{3} = -\frac{1}{2}$ and $\sin\frac{2\pi}{3} = \frac{\sqrt{3}}{2}$

F TANGENT FUNCTION

Definition Tangent Function

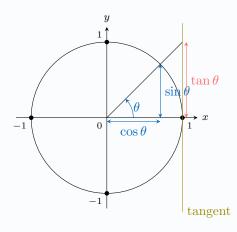
The tangent of an angle θ is defined, whenever $\cos \theta \neq 0$, as the ratio of the sine to the cosine:

$$\tan \theta = \frac{\sin \theta}{\cos \theta}.$$

Equivalently, $\tan \theta$ is defined for all real θ such that $\theta \neq \frac{\pi}{2} + k\pi$ for any integer k.

Proposition Geometric Interpretation of Tangent

On the unit circle, for any angle θ with $\cos \theta \neq 0$, the ray from the origin forming an angle θ with the positive x-axis meets the vertical tangent line x = 1 at the point $(1, \tan \theta)$. In particular, $\tan \theta$ is the y-coordinate of this intersection point.



Proposition Tangent Values for Common Angles

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
0	0	1	0
π	1	$\sqrt{3}$	$\sqrt{3}$
$\frac{\pi}{6}$	$\overline{2}$		3
π	$\sqrt{2}$	$\sqrt{2}$	1
$\overline{4}$	2	$\overline{2}$	1
π	$\sqrt{3}$	1	$\sqrt{3}$
$\frac{\pi}{3}$	$\overline{2}$	$\overline{2}$	V 9
$\frac{\pi}{2}$	1	0	undefined

The values in other quadrants follow from the symmetries of the unit circle and the fact that sine and cosine are 2π -periodic.

G ANGLE SUM AND DIFFERENCE IDENTITIES

Proposition Cosine of Difference

$$\cos(A - B) = \cos A \cos B + \sin A \sin B.$$

Proposition Cosine of Sum

$$\cos(A+B) = \cos A \cos B - \sin A \sin B.$$

Proposition Sine of Sum and Difference

$$\sin(A+B) = \sin A \cos B + \cos A \sin B,$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B.$$

Proposition Tangent of Sum and Difference .

For angles A and B such that all expressions below are defined,

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B},$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}.$$

8