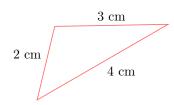
PROPERTIES OF TRIANGLES

A TYPES OF TRIANGLES

A.1 CLASSIFYING TRIANGLES BY SIDE LENGTHS

MCQ 1: Classify the triangle:



Choose one answer:

⊠ Scalene

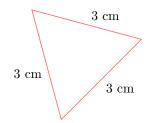
 \square Isosceles

☐ Equilateral

 \Box Right-angled triangle

 ${\it Answer:}$ The triangle is scalene because its sides are 4 cm, 3 cm, and 2 cm, which are all different lengths.

MCQ 2: Classify the triangle:



Choose one answer:

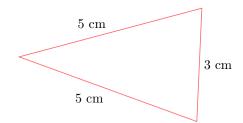
□ Scalene

⊠ Equilateral

☐ Right-angled triangle

Answer: The triangle is equilateral because all three sides are 3 cm long. It is also isosceles because an equilateral triangle has at least two equal sides.

MCQ 3: Classify the triangle:



Choose one answer:

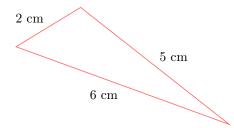
□ Scalene

☐ Equilateral

 \square Right-angled triangle

Answer: The triangle is isosceles because two sides are 5 cm and one side is 3 cm, so exactly two sides have the same length.

MCQ 4: Classify the triangle:



Choose one answer:

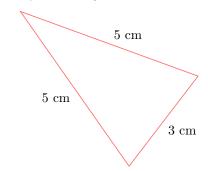
☐ Isosceles

☐ Equilateral

☐ Right-angled triangle

Answer: The triangle is scalene because its sides are 6 cm, 5 cm, and 2 cm, which are all different lengths.

MCQ 5: Classify the triangle:



Choose one answer:

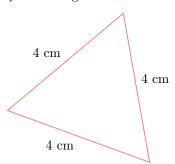
□ Scalene

 \square Equilateral

☐ Right-angled triangle

Answer: The triangle is isosceles because two sides are 5 cm and one side is 3 cm, so exactly two sides have the same length.

MCQ 6: Classify the triangle:



Choose one answer:

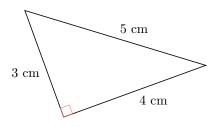
☐ Scalene

□ Equilateral

☐ Right-angled triangle

Answer: The triangle is equilateral because all three sides are 4 cm long.

MCQ 7: Classify the triangle:



Choose one answer:

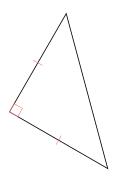
☐ Isosceles

☐ Equilateral

⊠ Right-angle

Answer: The triangle is right-angled.

MCQ 8: Classify the triangle:



Choose one or two answers:

□ Scalene

☐ Equilateral

 \boxtimes Right-angle

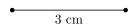
Answer: The triangle is right-angled and isosceles.

A.2 CONSTRUCTING TRIANGLES WITH A RULER AND COMPASS

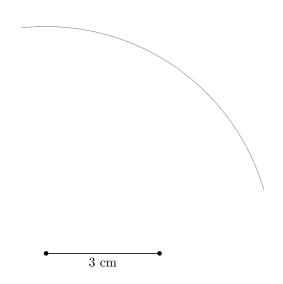
Ex 9: Construct a triangle ABC with AB=3 cm, AC=6 cm, and BC=5 cm, leaving the construction marks visible, using a ruler and a compass.

Answer: To construct a triangle ABC with AB=3 cm, AC=6 cm, and BC=5 cm:

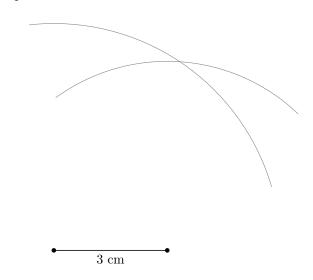
1. Draw the segment \overline{AB} of length 3 cm using your ruler.



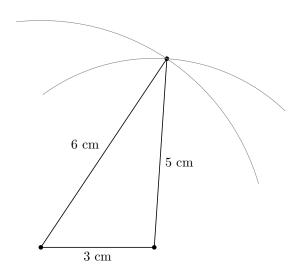
2. Draw an arc with center A and radius 6 cm using your compass.



3. Draw an arc with center B and radius 5 cm using your compass.



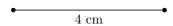
4. Mark the point C at the intersection of the two arcs, then draw the segments \overline{AC} and \overline{BC} using your ruler.



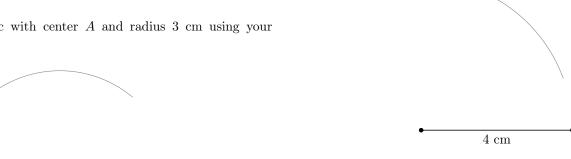
Ex 10: Construct a triangle ABC with AB = 4 cm, AC = 3 cm, and BC = 5 cm, leaving the construction marks visible, using a ruler and a compass.

Answer: To construct a triangle ABC with AB=4 cm, AC=3 cm, and BC=5 cm:

1. Draw the segment \overline{AB} of length 4 cm using your ruler.



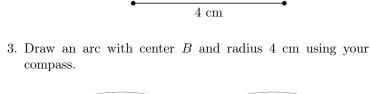
2. Draw an arc with center A and radius 3 cm using your compass.

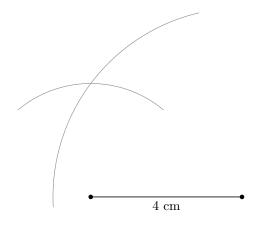


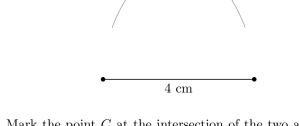
3. Draw an arc with center B and radius 5 cm using your

compass.

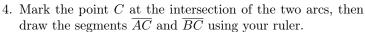
 $4~\mathrm{cm}$

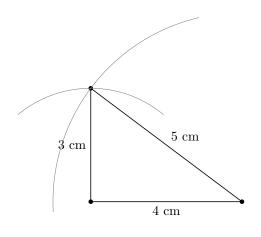


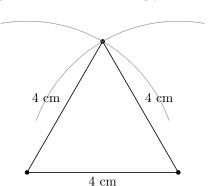




4. Mark the point C at the intersection of the two arcs, then draw the segments \overline{AC} and \overline{BC} using your ruler.







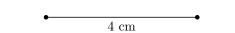
Ex 11: Construct an equilateral triangle ABC with AB = 4cm, leaving the construction marks visible, using a ruler and a compass.

Ex 12: Construct an isosceles triangle ABC with AB = 4 cm, AC = 3 cm, and BC = 3 cm, leaving the construction marks visible, using a ruler and a compass.

Answer: To construct an equilateral triangle ABC with AB = 4

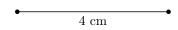
Answer: To construct an isosceles triangle ABC with AB = 4 cm, AC = 3 cm, and BC = 3 cm:

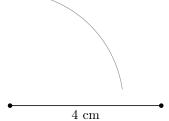
1. Draw the segment \overline{AB} of length 4 cm using your ruler.



2. Draw an arc with center A and radius 3 cm using your

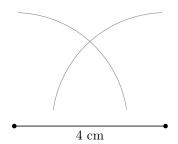
1. Draw the segment \overline{AB} of length 4 cm using your ruler.



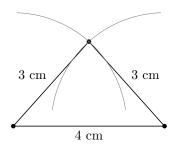


2. Draw an arc with center A and radius 4 cm using your compass.

3. Draw an arc with center B and radius 3 cm using your Answer: The sum of the angles in a triangle is 180° . Therefore: compass.



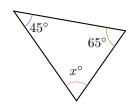
4. Mark the point C at the intersection of the two arcs, then draw the segments \overline{AC} and \overline{BC} using your ruler.



B ANGLES

B.1 FINDING AN UNKNOWN ANGLE

Ex 13: Find the unknown angle in the triangle below:

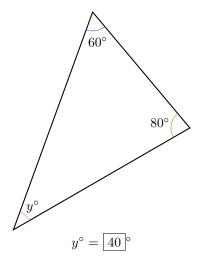


$$x^{\circ} = \boxed{70}^{\circ}$$

Answer: As the sum of the angles of a triangle is $x^{\circ} + 45^{\circ} + 65^{\circ} = 180^{\circ}$

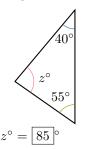
$$180^{\circ} \quad \therefore x^{\circ} + 110^{\circ} = 180^{\circ}$$
$$\therefore x^{\circ} = 180^{\circ} - 110^{\circ}$$
$$\therefore x^{\circ} = 70^{\circ}$$

Ex 14: Find the unknown angle in the triangle below:



$$y^{\circ} + 60^{\circ} + 80^{\circ} = 180^{\circ}$$
$$y^{\circ} + 140^{\circ} = 180^{\circ}$$
$$y^{\circ} = 180^{\circ} - 140^{\circ}$$
$$y^{\circ} = 40^{\circ}$$

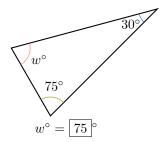
Ex 15: Find the unknown angle in the triangle below:



Answer: The sum of the angles in a triangle is 180°. Therefore:

$$z^{\circ} + 40^{\circ} + 55^{\circ} = 180^{\circ}$$
$$z^{\circ} + 95^{\circ} = 180^{\circ}$$
$$z^{\circ} = 180^{\circ} - 95^{\circ}$$
$$z^{\circ} = 85^{\circ}$$

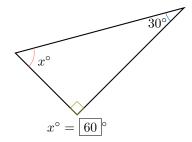
Ex 16: Find the unknown angle in the triangle below:



Answer: The sum of the angles in a triangle is 180°. Therefore:

$$w^{\circ} + 30^{\circ} + 75^{\circ} = 180^{\circ}$$
$$w^{\circ} + 105^{\circ} = 180^{\circ}$$
$$w^{\circ} = 180^{\circ} - 105^{\circ}$$
$$w^{\circ} = 75^{\circ}$$

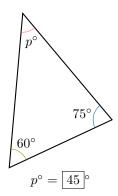
Ex 17: Find the unknown angle in the triangle below:



Answer: The sum of the angles in a triangle is 180°, and a right angle is 90° . Therefore:

$$x^{\circ} + 30^{\circ} + 90^{\circ} = 180^{\circ}$$
$$x^{\circ} + 120^{\circ} = 180^{\circ}$$
$$x^{\circ} = 180^{\circ} - 120^{\circ}$$
$$x^{\circ} = 60^{\circ}$$

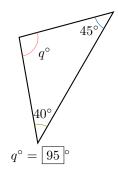
Ex 18: Find the unknown angle in the triangle below:



Answer: The sum of the angles in a triangle is 180°. Therefore:

$$p^{\circ} + 75^{\circ} + 60^{\circ} = 180^{\circ}$$
$$p^{\circ} + 135^{\circ} = 180^{\circ}$$
$$p^{\circ} = 180^{\circ} - 135^{\circ}$$
$$p^{\circ} = 45^{\circ}$$

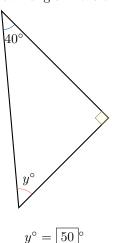
Ex 19: Find the unknown angle in the triangle below:



Answer: The sum of the angles in a triangle is 180°. Therefore:

$$q^{\circ} + 45^{\circ} + 40^{\circ} = 180^{\circ}$$
$$q^{\circ} + 85^{\circ} = 180^{\circ}$$
$$q^{\circ} = 180^{\circ} - 85^{\circ}$$
$$q^{\circ} = 95^{\circ}$$

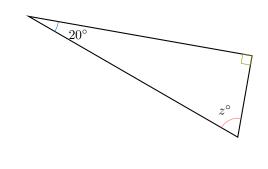
Ex 20: Find the unknown angle in the triangle below:



Answer: The sum of the angles in a triangle is 180° , and a right angle is 90° . Therefore:

$$y^{\circ} + 40^{\circ} + 90^{\circ} = 180^{\circ}$$
$$y^{\circ} + 130^{\circ} = 180^{\circ}$$
$$y^{\circ} = 180^{\circ} - 130^{\circ}$$
$$y^{\circ} = 50^{\circ}$$

Ex 21: Find the unknown angle in the triangle below:



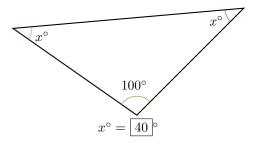
$$z^{\circ} = \boxed{70}^{\circ}$$

Answer: The sum of the angles in a triangle is 180° , and a right angle is 90° . Therefore:

$$z^{\circ} + 20^{\circ} + 90^{\circ} = 180^{\circ}$$
$$z^{\circ} + 110^{\circ} = 180^{\circ}$$
$$z^{\circ} = 180^{\circ} - 110^{\circ}$$
$$z^{\circ} = 70^{\circ}$$

B.2 FINDING ANGLES IN ISOSCELES TRIANGLES

Ex 22: Find the unknown angle in the triangle below:

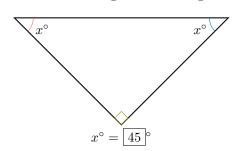


Answer: The sum of the angles in a triangle is 180° . Since two angles are equal (both x°), the triangle is isosceles. Therefore:

$$x^{\circ} + x^{\circ} + 100^{\circ} = 180^{\circ}$$

 $2x^{\circ} + 100^{\circ} = 180^{\circ}$ (Collecting like terms)
 $2x^{\circ} = 180^{\circ} - 100^{\circ}$ (Subtracting 100 from both sides)
 $2x^{\circ} = 80^{\circ}$
 $x^{\circ} = 80^{\circ} \div 2$ (Dividing both sides by 2)
 $x^{\circ} = 40^{\circ}$

Ex 23: Find the unknown angle in the triangle below:

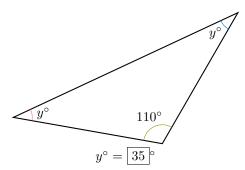


Answer: The sum of the angles in a triangle is 180°, and a right Answer: The sum of the angles in a triangle is 180°. Since two angle is 90°. Since two angles are equal (both x°), the triangle angles are equal (both x°), the triangle is isosceles. Therefore: is isosceles. Therefore:

$$x^{\circ} + x^{\circ} + 90^{\circ} = 180^{\circ}$$

 $2x^{\circ} + 90^{\circ} = 180^{\circ}$ (Collecting like terms)
 $2x^{\circ} = 180^{\circ} - 90^{\circ}$ (Subtracting 90 from both sides)
 $2x^{\circ} = 90^{\circ}$
 $x^{\circ} = 90^{\circ} \div 2$ (Dividing both sides by 2)
 $x^{\circ} = 45^{\circ}$

Ex 24: Find the unknown angle in the triangle below:

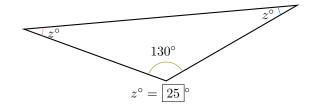


Answer: The sum of the angles in a triangle is 180°. Since two angles are equal (both y°), the triangle is isosceles. Therefore:

$$y^{\circ} + y^{\circ} + 110^{\circ} = 180^{\circ}$$

 $2y^{\circ} + 110^{\circ} = 180^{\circ}$ (Collecting like terms)
 $2y^{\circ} = 180^{\circ} - 110^{\circ}$ (Subtracting 110 from both sides)
 $2y^{\circ} = 70^{\circ}$
 $y^{\circ} = 70^{\circ} \div 2$ (Dividing both sides by 2)
 $y^{\circ} = 35^{\circ}$

Ex 25: Find the unknown angle in the triangle below:

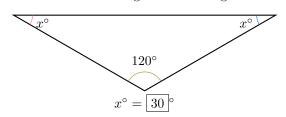


Answer: The sum of the angles in a triangle is 180°. Since two angles are equal (both z°), the triangle is isosceles. Therefore:

$$z^{\circ} + z^{\circ} + 130^{\circ} = 180^{\circ}$$

 $2z^{\circ} + 130^{\circ} = 180^{\circ}$ (Collecting like terms)
 $2z^{\circ} = 180^{\circ} - 130^{\circ}$ (Subtracting 130 from both side
 $2z^{\circ} = 50^{\circ}$
 $z^{\circ} = 50^{\circ} \div 2$ (Dividing both sides by 2)
 $z^{\circ} = 25^{\circ}$

Ex 26: Find the unknown angle in the triangle below:



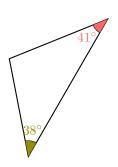
$$x^{\circ} + x^{\circ} + 120^{\circ} = 180^{\circ}$$

$$2x^{\circ} + 120^{\circ} = 180^{\circ}$$
 (Collecting like terms)
$$2x^{\circ} = 180^{\circ} - 120^{\circ}$$
 (Subtracting 120 from both sides)
$$2x^{\circ} = 60^{\circ}$$

$$x^{\circ} = 60^{\circ} \div 2$$
 (Dividing both sides by 2)
$$x^{\circ} = 30^{\circ}$$

B.3 CLASSIFYING ANGLES

MCQ 27: Classify the triangle:



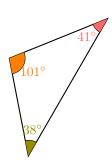
Choose one answer:

- ☐ Isosceles
- ☐ Equilateral
- □ Right-angle

Answer: The third angle x° is:

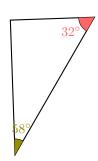
$$x^{\circ} + 38^{\circ} + 41^{\circ} = 180^{\circ}$$

 $x^{\circ} + 79^{\circ} = 180^{\circ}$ (Adding known angles)
 $x^{\circ} = 180^{\circ} - 79^{\circ}$ (Subtracting 79 from both sides)
 $x^{\circ} = 101^{\circ}$



 $2z^{\circ} = 180^{\circ} - 130^{\circ}$ (Subtracting 130 from both sides) Since the angles $(41^{\circ}, 38^{\circ}, 101^{\circ})$ are all different, the triangle is scalene.

MCQ 28: Classify the triangle:



Choose one answer:

☐ Isosceles

 \square Equilateral

⊠ Right-angle

 \Box Scalene

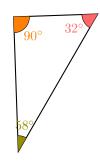
Answer: The third angle x° is:

$$x^{\circ} + 32^{\circ} + 58^{\circ} = 180^{\circ}$$

$$x^{\circ} + 90^{\circ} = 180^{\circ}$$
 (Adding known angles)

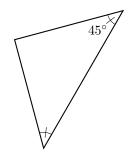
$$x^{\circ} = 180^{\circ} - 90^{\circ}$$
 (Subtracting 90 from both sides)

$$x^{\circ} = 90^{\circ}$$



Since one angle is 90°, the triangle is right-angled.

MCQ 29: Classify the triangle:



Choose two answers:

☐ Equilateral

⊠ Right-angle

□ Scalene

Answer: The triangle has two equal angles of 45°. The third angle x° is:

$$x^{\circ} + 45^{\circ} + 45^{\circ} = 180^{\circ}$$

$$x^{\circ} + 90^{\circ} = 180^{\circ}$$
 (Adding known angles)

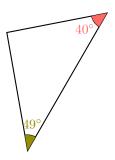
 $x^{\circ} = 180^{\circ} - 90^{\circ}$ (Subtracting 90 from both sides)

$$x^{\circ} = 90^{\circ}$$



Since two angles are equal (45°) and one angle is 90°, the triangle is isosceles and right-angled.

MCQ 30: Classify the triangle:



Choose one answer:

☐ Isosceles

☐ Equilateral

☐ Right-angle

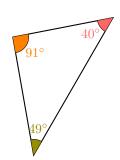
Answer: The third angle x° is:

$$x^{\circ} + 40^{\circ} + 49^{\circ} = 180^{\circ}$$

$$x^{\circ} + 89^{\circ} = 180^{\circ}$$
 (Adding known angles)

$$x^{\circ} = 180^{\circ} - 89^{\circ}$$
 (Subtracting 89 from both sides)

$$x^{\circ} = 91^{\circ}$$



Since the angles $(40^\circ, 49^\circ, 91^\circ)$ are all different, the triangle is scalene.

B.4 EVALUATING ANGLE PROPERTIES

MCQ 31: An equilateral triangle can be a right-angled triangle.

Choose one answer:

☐ True

⊠ False

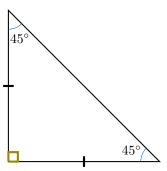
 $_{Answer:}$ False. An equilateral triangle has three equal angles of $60^{\circ},$ summing to $180^{\circ}.$ A right-angled triangle requires one angle of $90^{\circ},$ which would exceed 180° with two 60° angles, making it impossible.

MCQ 32: An isosceles triangle can be a right-angled triangle. Choose one answer:

⊠ True

☐ False

Answer: True. An isosceles right-angled triangle has two equal angles of 45° and one right angle of 90° , satisfying the angle sum of 180° . The two equal sides are the legs, and the third side is the hypotenuse.

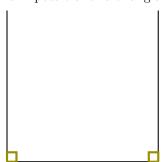


MCQ 33: A triangle can have two right angles. Choose one answer:

 \square True

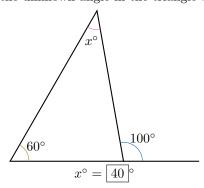
⊠ False

Answer: False. The sum of angles in a triangle is 180°. If two angles were 90°, their sum would be 180°, leaving no room for a third angle, which is impossible for a triangle.



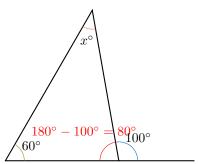
B.5 DEDUCTING ANGLES IN TRIANGLE CONFIGURATIONS

Ex 34: Find the unknown angle in the triangle below:



Answer:

• The angles on a straight line sum to 180°. The exterior angle is 100°, so the interior angle is:

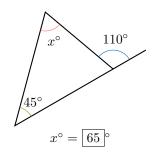


• The sum of the angles in a triangle is 180° . In the triangle, the angles are 60° , 80° , and x° . Therefore:

$$x^{\circ} + 60^{\circ} + 80^{\circ} = 180^{\circ}$$

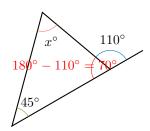
 $x^{\circ} + 140^{\circ} = 180^{\circ}$ (Adding known angles)
 $x^{\circ} = 180^{\circ} - 140^{\circ}$ (Subtracting 140 from both sides of $x^{\circ} = 40^{\circ}$

Ex 35: Find the unknown angle in the triangle below:



Answer:

• The angles on a straight line sum to 180° . At point H, the exterior angle is 110° , so the interior angle is:

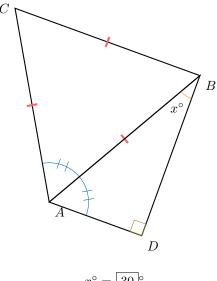


• The sum of the angles in a triangle is 180° . In the triangle, the angles are 45° , 70° , and x° . Therefore:

$$x^{\circ} + 45^{\circ} + 70^{\circ} = 180^{\circ}$$

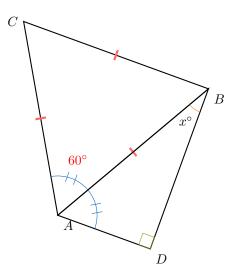
 $x^{\circ} + 115^{\circ} = 180^{\circ}$ (Adding known angles)
 $x^{\circ} = 180^{\circ} - 115^{\circ}$ (Subtracting 115 from both sides $x^{\circ} = 65^{\circ}$

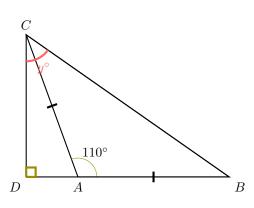
Ex 36: Find the unknown angle in the triangle below:



Answer: Consider the diagram:

• Triangle ABC is equilateral, as all sides are equal (marked with |). Thus, each angle in $\triangle ABC$ is 60°. Specifically, $\angle BAC = 60$ °.

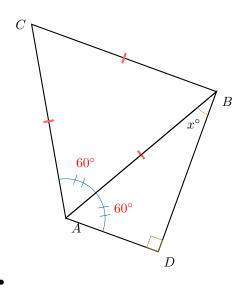


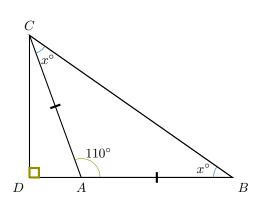


$$y^{\circ} = 55^{\circ}$$

Answer:

• Let x° be the unknown angle in the triangle ABC





• In triangle ABD, $\angle ADB = 90^{\circ}$ (right angle), and $\angle DAB = 60^{\circ}$ (since $\angle DAB = \angle BAC$). The sum of angles in $\triangle ABD$ is 180° . Therefore:

The sum of the angles of a triangle is 180°. For the triangle ABC,

$$x^{\circ} + 60^{\circ} + 90^{\circ} = 180^{\circ}$$

$$x^{\circ} + 150^{\circ} = 180^{\circ} \quad \text{(Adding known angles)}$$

$$x^{\circ} = 180^{\circ} - 150^{\circ} \quad \text{(Subtracting 150 from both sides)}$$

$$x^{\circ} = 30^{\circ}$$

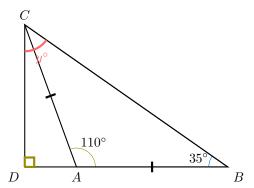
$$x^{\circ} + x^{\circ} + 110^{\circ} = 180^{\circ}$$

 $2x^{\circ} + 110^{\circ} = 180^{\circ}$ (Collecting like terms)
 $\therefore 2x^{\circ} = 180^{\circ} - 110^{\circ}$ (Subtract 110 from both sides in the second of the second of

Ex 37: Find the unknown angle in the triangle below:

• For the triangle *DCB*,

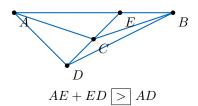
9



Answer: Points B, E, and A are collinear, with E between B and A on segment AB. The length of the path BE + EA equals the total length BA. Therefore:

$$BE + EA = BA$$

Ex 41:



Answer: In triangle AED, the triangle inequality theorem states that the sum of any two sides is greater than the third side. Thus, AE + ED > AD. Therefore:

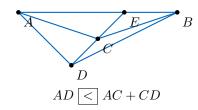
$$AE + ED > AD$$

 $y^{\circ} + 90^{\circ} + 35^{\circ} = 180^{\circ}$ $y^{\circ} + 125^{\circ} = 180^{\circ}$ $\therefore y^{\circ} = 180^{\circ} - 125^{\circ}$ (Subtract 125 from both sides)

C TRIANGLE INEQUALITY THEOREM

C.1 WRITING INEQUALITIES

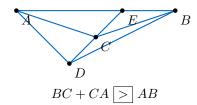
Ex 38:



Answer: In triangle ACD, the triangle inequality theorem states that the sum of any two sides is greater than the third side. Thus, AC + CD > AD. Therefore:

$$AD < AC + CD$$

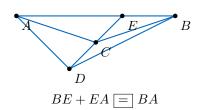
Ex 39:



Answer: In triangle ABC, the triangle inequality theorem states that the sum of any two sides is greater than the third side. Thus, BC + CA > AB. Therefore:

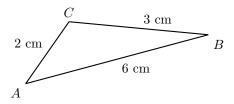
$$BC + CA > AB$$

Ex 40:



C.2 DETERMINING TRIANGLE EXISTENCE

MCQ 42:



Could these be the side lengths of a triangle?

□ Yes

⊠ No

Answer: To form a triangle, each side must be less than the sum of the other two sides. For sides AB=6 cm, BC=3 cm, AC=2 cm:

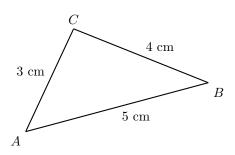
• 2 < 6 + 3 = 9 (True) (Checking AC)

• 3 < 6 + 2 = 8 (True) (Checking BC)

• 6 < 3 + 2 = 5 (False) (Checking AB)

Since 6 is not less than 3+2, the side lengths cannot form a triangle. Therefore, the answer is No.

MCQ 43:



Could these be the side lengths of a triangle?

⊠ Yes

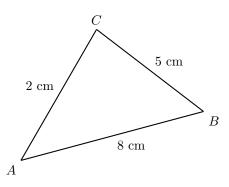
□ No

Answer: To form a triangle, each side must be less than the sum of the other two sides. For sides AB=5 cm, BC=4 cm, AC=3 cm:

- 3 < 5 + 4 = 9 (True) (Checking AC)
- 4 < 5 + 3 = 8 (True) (Checking BC)
- 5 < 4 + 3 = 7 (True) (Checking AB)

Since all inequalities are true, the side lengths can form a triangle. Therefore, the answer is Yes.

MCQ 44:



Could these be the side lengths of a triangle?

 \square Yes

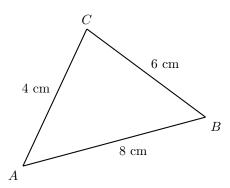
⊠ No

Answer: To form a triangle, each side must be less than the sum of the other two sides. For sides AB=8 cm, BC=5 cm, AC=2 cm:

- 2 < 8 + 5 = 13 (True) (Checking AC)
- 5 < 8 + 2 = 10 (True) (Checking *BC*)
- 8 < 5 + 2 = 7 (False) (Checking AB)

Since 8 is not less than 5+2, the side lengths cannot form a triangle. Therefore, the answer is No.

MCQ 45:



Could these be the side lengths of a triangle?

 \boxtimes Yes

 \square No

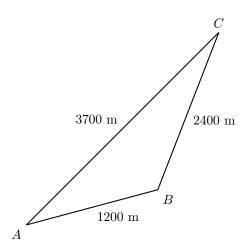
Answer: To form a triangle, each side must be less than the sum of the other two sides. For sides AB=8 cm, BC=6 cm, AC=4 cm:

• 4 < 8 + 6 = 14 (True) (Checking AC)

- 6 < 8 + 4 = 12 (True) (Checking *BC*)
- 8 < 6 + 4 = 10 (True) (Checking AB)

Since all inequalities are true, the side lengths can form a triangle. Therefore, the answer is Yes.

MCQ 46:



Could these be the side lengths of a triangle?

☐ Yes

⊠ No

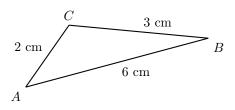
Answer: To form a triangle, each side must be less than the sum of the other two sides. Convert $AC=3.7~\mathrm{km}$ to 3700 m. For sides $AB=1200~\mathrm{m},~BC=2400~\mathrm{m},~AC=3700~\mathrm{m}$:

- 1200 < 2400 + 3700 = 6100 (True) (Checking AB)
- 2400 < 1200 + 3700 = 4900 (True) (Checking BC)
- 3700 < 1200 + 2400 = 3600 (False) (Checking AC)

Since 3700 is not less than 1200 + 2400, the side lengths cannot form a triangle. Therefore, the answer is No.

C.3 DETERMINING TRIANGLE EXISTENCE

Ex 47:



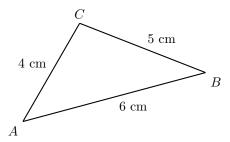
Could these side lengths form a triangle? Justify your answer.

Answer: To form a triangle, each side must be less than the sum of the other two sides. For sides AB=6 cm, BC=3 cm, AC=2 cm:

- 2 < 6 + 3 = 9 (True) (Checking AC)
- 3 < 6 + 2 = 8 (True) (Checking BC)
- 6 < 3 + 2 = 5 (False) (Checking AB)

Since 6 is not less than 3+2, the side lengths cannot form a triangle.

Ex 48:



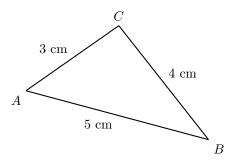
Could these side lengths form a triangle? Justify your answer.

Answer: To form a triangle, each side must be less than the sum of the other two sides. For sides AB=6 cm, BC=5 cm, AC=4 cm:

- 4 < 6 + 5 = 11 (True) (Checking AC)
- 5 < 6 + 4 = 10 (True) (Checking *BC*)
- 6 < 5 + 4 = 9 (True) (Checking AB)

Since all inequalities are true, the side lengths can form a triangle.

Ex 49:



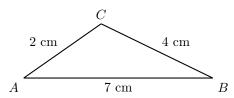
Could these side lengths form a triangle? Justify your answer.

Answer: To form a triangle, each side must be less than the sum of the other two sides. For sides AB=5 cm, BC=4 cm, AC=3 cm:

- 3 < 5 + 4 = 9 (True) (Checking AC)
- 4 < 5 + 3 = 8 (True) (Checking BC)
- 5 < 4 + 3 = 7 (True) (Checking AB)

Since all inequalities are true, the side lengths can form a triangle.

Ex 50:



Could these side lengths form a triangle? Justify your answer.

Answer: To form a triangle, each side must be less than the sum of the other two sides. For sides AB=7 cm, BC=4 cm, AC=2 cm:

- 2 < 7 + 4 = 11 (True) (Checking AC)
- 4 < 7 + 2 = 9 (True) (Checking BC)
- 7 < 4 + 2 = 6 (False) (Checking AB)

Since 7 is not less than 4 + 2, the side lengths cannot form a triangle.

C.4 EXPLORING TRIANGLE EXISTENCE

Ex 51: ABC is an isosceles triangle with C as the vertex of the equal sides. The perimeter is 10 cm, and AB = 3 cm. Can this triangle be constructed? Justify your answer.

Answer.

• Given Data

Triangle ABC is isosceles at C, so AC = BC. The perimeter is 10 cm, and AB = 3 cm.

• Calculating the Equal Sides

The perimeter is the sum of all sides:

Perimeter =
$$AB + AC + BC$$

 $10 = 3 + AC + AC$ (Since $AC = BC$)
 $10 = 3 + 2AC$
 $2AC = 10 - 3$ (Subtracting 3 from both sides)
 $2AC = 7$
 $AC = \frac{7}{2} = 3.5$ cm (Dividing both sides by 2)

So, AC = BC = 3.5 cm.

• Checking the Triangle Inequality

For sides AB=3 cm, AC=3.5 cm, BC=3.5 cm, each side must be less than the sum of the other two:

$$AB + AC > BC$$
: $3 + 3.5 = 6.5 > 3.5$ (True)
 $AB + BC > AC$: $3 + 3.5 = 6.5 > 3.5$ (True)
 $AC + BC > AB$: $3.5 + 3.5 = 7 > 3$ (True)

Since all inequalities are true, the triangle can be constructed.

Ex 52: ABC is an isosceles triangle with C as the vertex of the equal sides. The perimeter is 10 cm, and AC = 2 cm. Can this triangle be constructed? Justify your answer.

Answer:

• Given Data

Triangle ABC is isosceles at C, so AC = BC. The perimeter is 10 cm, and AC = 2 cm, so BC = 2 cm.

• Calculating the Remaining Side

The perimeter is the sum of all sides:

Perimeter =
$$AB + AC + BC$$

 $10 = AB + 2 + 2$ (Since $AC = BC = 2$ cm)
 $10 = AB + 4$
 $AB = 10 - 4$ (Subtracting 4 from both sides)
 $AB = 6$ cm

So, AB = 6 cm.

• Checking the Triangle Inequality

For sides AB=6 cm, AC=2 cm, BC=2 cm, each side must be less than the sum of the other two:

$$AB + AC > BC$$
: $6 + 2 = 8 > 2$ (True)
 $AB + BC > AC$: $6 + 2 = 8 > 2$ (True)
 $AC + BC > AB$: $2 + 2 = 4 > 6$ (False)

Since 2+2=4 is not greater than 6, the side lengths cannot form a triangle.

Ex 53: In triangle ABC, AB=5 cm and AC=3 cm. What are the possible integer lengths for segment \overline{BC} ? Justify your answer.

Answer:

• Given Data

In triangle ABC, AB = 5 cm, AC = 3 cm, and BC is an integer length to be determined.

• Finding the Range for BC

To form a triangle, the side lengths must satisfy the triangle inequality theorem: the sum of any two sides must be greater than the third side. For sides AB=5 cm, AC=3 cm, BC, the inequalities are:

$$AB + AC > BC$$
: $5 + 3 > BC$ (Sum of AB and AC) $8 > BC$ (Simplifying) $BC < 8$ cm

$$AB+BC>AC: 5+BC>3$$
 (Sum of AB and BC)
$$BC>3-5 \quad \text{(Subtracting 5 from both sides)}$$

$$BC>-2 \text{ cm} \quad \text{(Always true since } BC>0\text{)}$$

$$AC+BC>AB$$
: $3+BC>5$ (Sum of AC and BC)
$$BC>5-3$$
 (Subtracting 3 from both sides)
$$BC>2 \text{ cm}$$

Combining the constraints, BC must satisfy:

$$2 < BC < 8 \text{ cm}$$

Since BC must be an integer, the possible values are 3, 4, 5, 6, 7 cm.

• Verifying the Solutions

Check the inequalities for each integer value:

$$-BC = 3$$
 cm: $5 + 3 > 3$ (8 > 3), $5 + 3 > 3$ (8 > 3), $3 + 3 > 5$ (6 > 5). All true.

$$-BC = 4 \text{ cm}$$
: $5+3>4 (8>4)$, $5+4>3 (9>3)$, $3+4>5 (7>5)$. All true.

$$-BC = 5$$
 cm: $5+3 > 5$ (8 > 5), $5+5 > 3$ (10 > 3), $3+5 > 5$ (8 > 5). All true.

$$-BC = 6$$
 cm: $5+3>6$ (8 > 6), $5+6>3$ (11 > 3), $3+6>5$ (9 > 5). All true.

$$-BC = 7$$
 cm: $5+3 > 7$ (8 > 7), $5+7 > 3$ (12 > 3), $3+7 > 5$ (10 > 5). All true.

Therefore, the possible integer lengths for BC are 3 cm, 4 cm, 5 cm, 6 cm, and 7 cm.