PROPERTIES OF QUADRILATERALS

Definition **Trapezium** —

A **trapezium** is a quadrilateral with one pair of opposite sides parallel.

B PROPERTIES

Proposition Properties of a Parallelogram

 \bullet The opposite sides are equal in length.

 $\bullet\,$ The opposite angles are equal.

 \bullet The adjacent angles are supplementary.

 $\bullet\,$ The diagonals bisect each other.

Proposition Properties of a Square

• The opposite sides are parallel.

 \bullet The diagonals bisect each other at right angles and are equal in length.

Proposition Properties of a Rectangle

• The opposite sides are equal in length.

• The opposite sides are parallel.

• The diagonals bisect each other and are equal in length.

Proposition **Properties of a Rhombus**

• The opposite sides are parallel.

• The opposite angles are equal.

 \bullet The adjacent angles are supplementary.

• The diagonals bisect each other at right angles.

C ANGLES

Proposition Sum of the Angles of a Quadrilateral

The sum of the angles of a quadrilateral is 360° .

$$a^{\circ} + b^{\circ} + c^{\circ} + d^{\circ} = 360^{\circ}$$

Cut and paste angles

Proof

We divide the quadrilateral ABCD into two triangles, ABC and ACD, using the diagonal AC.

Sum of the angles of quadrilateral ABCD = Sum of angles of $\triangle ABC$ + Sum of angles of $\triangle ACD$ = $180^{\circ} + 180^{\circ}$ = 360°

Answer: The sum of the angles of a quadrilateral is 360°. Given angles 60°, 95°, and 80°:

$$x^\circ + 95^\circ + 80^\circ + 60^\circ = 360^\circ$$

$$x^\circ + 235^\circ = 360^\circ \quad \text{(Adding known angles)}$$

$$x^\circ = 360^\circ - 235^\circ \quad \text{(Subtracting 235 from both sides)}$$

$$x^\circ = 125^\circ$$

5

