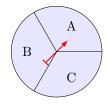
A SAMPLE SPACES

A.1 FINDING THE SAMPLE SPACES

MCQ 1: A fair six-sided die is rolled once.


Find the sample space.

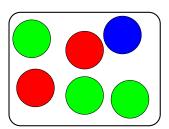
- $\Box \{1,2,3,4,5\}$
- \square {1, 2, 3, 4, 5, 6, 7}
- $\boxtimes \{1, 2, 3, 4, 5, 6\}$

Answer:

- The sample space is all possible outcomes.
- When rolling a fair six-sided die, the possible outcomes are the numbers on the die's faces.
- So, the sample space is $\{1, 2, 3, 4, 5, 6\}$.

MCQ 2: You spin the arrow on the spinner below.

Find the sample space.


- $\boxtimes \{A, B, C\}$
- $\square \{A, B\}$
- $\square \{A,C\}$

Answer:

- The sample space is all possible outcomes of spinning the
- Here, the possible outcomes are A, B, and C.
- So, the sample space is $\{A, B, C\}$.

MCQ 3: A ball is chosen randomly from a bag containing 2 red balls, 1 blue ball, and 3 green balls.

Bag

Find the sample space.

- ⊠ {Red, Blue, Green}
- \square {2 Red, 1 Blue, 3 Green}
- □ {Red, Red, Blue, Green, Green, Green}

Answer:

- When choosing a ball randomly from the bag containing 2 red balls, 1 blue ball, and 3 green balls, the balls are identical in color, so we do not distinguish between them based on quantity.
- So, the sample space (all possible outcomes) is: {Red, Blue, Green}

MCQ 4: A letter is chosen randomly from the word BANANA. Find all possible outcomes for the chosen letter.

- $\boxtimes \{B, N, A\}$
- $\square \{B, A, N, A, N, A\}$
- \square {A, B, N, A, B, N}

Answer:

- When choosing a letter randomly from the word "BANANA", the possible outcomes are the distinct letters in the word.
- So, the sample space (all possible outcomes) is: {B, A, N} or {B, N, A}. The order in which the letters are listed does not matter.

MCQ 5: A couple is expecting a baby. What is the sample space for this random experiment?

- \boxtimes {boy, girl}
- \square {boy}
- \square {girl}

Answer:

- The sample space is all possible outcomes for the sex of the baby.
- The possible outcomes are "boy" or "girl".
- So, the sample space is {boy, girl}.

B EVENTS

B.1 FINDING EVENTS FOR DIE-ROLLING EVENTS

MCQ 6: If you roll a die, what is the set of outcomes for the event "getting a 3"?

- \Box {1, 3, 5}
- \Box {2, 3, 4}
- \Box {1,2,3}

 $\boxtimes \{3\}$

Answer: The set of outcomes for the event "getting a 3" is {3}.

MCQ 7: If you roll a die, what is the set of outcomes for the event "getting a 5 or 6"?

$$\Box \{1,2,3\}$$

$$\Box \{3,4,5\}$$

Answer: The set of outcomes for the event "getting a 5 or 6" is $\{5,6\}$.

MCQ 8: If you roll a die, what is the set of outcomes for the event "getting a number greater than or equal to 4"?

$$\boxtimes \{4,5,6\}$$

$$\Box \{3,4,5\}$$

$$\Box \{2,3,4\}$$

Answer: The set of outcomes for the event "getting a number greater than or equal to 4" is $\{4, 5, 6\}$.

MCQ 9: If you roll a die, what is the set of outcomes for the event "even number"?

\Box {1, 3, 5}

$$\boxtimes \{2, 4, 6\}$$

$$\square$$
 {1, 2, 3, 4, 5, 6}

$$\Box$$
 {2, 3, 4, 5}

Answer: The set of outcomes for the event "even number" is $\{2,4,6\}$.

B.2 FINDING EVENTS IN A CASINO SPINNER

MCQ 10: If you spin the spinner below, what is the set of outcomes for the event "getting a 2"?

- $\boxtimes \{2\}$
- $\Box \{1,2,3\}$
- \Box {2, 4, 6}
- $\Box \{0,1,2\}$

Answer: The set of outcomes for the event "getting a 2" is {2}.

MCQ 11: If you spin the spinner below, what is the set of outcomes for the event "red"?

- $\Box \{1,3,5,7\}$
- \square {0}
- $\boxtimes \{2, 4, 6, 8\}$
- $\Box \{1,2,3,4\}$

Answer: The set of outcomes for the event "red" is $\{2, 4, 6, 8\}$.

MCQ 12: If you spin the spinner below, what is the set of outcomes for the event "getting an odd number"?

- $\Box \{0,1,3\}$
- \Box {2, 4, 6, 8}
- $\Box \{1,2,3,4\}$
- $\boxtimes \{1, 3, 5, 7\}$

Answer: The set of outcomes for the event "getting an odd number" is $\{1, 3, 5, 7\}$.

C COMPLEMENTARY EVENTS

C.1 FINDING THE COMPLEMENTARY EVENTS

MCQ 13: If you roll a die, what is the set of outcomes for the event "not getting a 6"?

- $\Box \{2,3,4\}$
- \square {1, 2, 3, 4, 5, 6}
- $\boxtimes \{1, 2, 3, 4, 5\}$
- $\Box \{1,3,5\}$

Answer: The set of outcomes for the event "not getting a 6" is $\{1, 2, 3, 4, 5\}$.

MCQ 14: If you roll a die, what is the set of outcomes for the event "not getting an odd number"?

- $\boxtimes \{2,4,6\}$
- \square {1,2,3,4,5,6}
- $\Box \{1,2,3\}$
- \Box {1, 3, 5}

Answer: The set of outcomes for the event "not getting an odd number" is $\{2,4,6\}$.

MCQ 15: If you spin the spinner below, what is the set of outcomes for the event "not getting a 4"?

- $\Box \{1,2,3,4\}$
- $\boxtimes \{0, 1, 2, 3, 5, 6, 7, 8\}$
- \Box {2, 4, 6, 8}
- $\Box \{4,5,6\}$

Answer: The set of outcomes for the event "not getting a 4" is $\{0,1,2,3,5,6,7,8\}$.

MCQ 16: If you spin the spinner below, what is the set of outcomes for the event "not getting red"?

- $\boxtimes \{0,1,3,5,7\}$
- $\Box \{2,4,6,8\}$
- \square {1, 2, 3, 4, 5, 6, 7, 8}
- \square {0}

Answer: The set of outcomes for the event "not getting red" is $\{0, 1, 3, 5, 7\}$.

D USING WORDS TO DESCRIBE PROBABILITY

D.1 FINDING THE PROBABILITY IN A DRAWING EXPERIMENT

MCQ 17: What is the chance of picking a red candy from a bag with 4 red candies and 4 blue candies?

Choose one answer:

- ☐ Impossible
- ☐ Less Likely

- ☐ Most Likely
- □ Certain

Answer: The correct answer is "Even Chance." Since there are the same number of red and blue candies, you have an equal chance of picking a red candy.

MCQ 18: What is the chance of picking a blue candy from a bag with 4 red candies and 4 blue candies?

Choose one answer:

- \square Impossible
- □ Less Likely
- ☐ Most Likely
- ☐ Certain

Answer: The correct answer is "Even Chance." Since there are the same number of red and blue candies, you have an equal chance of picking a blue candy.

MCQ 19: What is the chance of picking a blue candy from a bag with 9 red candies and 1 blue candy?

Choose one answer:

- □ Impossible
- □ Less Likely
- □ Even Chance
- ☐ Most Likely
- □ Certain

Answer: The correct answer is "Less Likely." Since there are many more red candies than blue candies, you have a small chance of picking a blue candy.

MCQ 20: What is the chance of picking a red candy from a bag with 9 red candies and 1 blue candy?

Choose one answer:

☐ Impossible

☐ Less Likely

□ Even Chance

⊠ Most Likely

☐ Certain

Answer: The correct answer is "Most Likely." Since there are many more red candies than blue candies, you have a big chance of picking a red candy.

D.2 FINDING THE PROBABILITY IN A DICE EXPERIMENT

MCQ 21: What is the chance of getting a 3 when you roll a die?

Choose one answer:

☐ Impossible

□ Less Likely

 \square Even Chance

☐ Most Likely

☐ Certain

Answer: The correct answer is "Less Likely." Since there are six numbers on a die, you have a small chance of rolling a 3.

MCQ 22: What is the chance of **not** getting a 3 when you roll a die?

Choose one answer:

☐ Impossible

☐ Less Likely

 \square Even Chance

□ Certain

Answer: The correct answer is "Most Likely." Since there are six numbers on a die and five of them are not 3, you have a big chance of rolling a 1, 2, 4, 5, or 6.

MCQ 23: What is the chance of getting an even number (2, 4, or 6) when you roll a die?

Choose one answer:

☐ Impossible

☐ Less Likely

⊠ Even Chance

☐ Most Likely

□ Certain

Answer: The correct answer is "Even Chance." Since there are six numbers on a die and three of them are even, you have an equal chance of getting an even number or an odd number.

MCQ 24: What is the chance of getting a 7 when you roll a die?

Choose one answer:

□ Less Likely

 \square Even Chance

 \square Most Likely

□ Certain

Answer: The correct answer is "Impossible." Since there are only six numbers on a die, from 1 to 6, you can't roll a 7.

E PROBABILITY

E.1 DESCRIBING PROBABILITIES WITH WORDS

MCQ 25: The probability of winning a game is $\frac{1}{10}$. Find the word to describe this probability.

☐ Impossible

□ Less Likely

☐ Even Chance

☐ Most Likely

□ Certain

Answer: The correct answer is "Less Likely." The probability of winning is $\frac{1}{10}$, which means you have the chance to win 1 game out of 10 games played. So, it's Less Likely.

MCQ 26: The probability of winning a game is $\frac{4}{5}$. Find the word to describe this probability.

□ Impossible	E.2 MAKING DECISIONS USING PROBAI
\square Less Likely	MCQ 30: Louis advises you to play because the
\square Even Chance	winning this game is $\frac{3}{4}$. Do you follow his advice
⊠ Most Likely	⊠ Yes
□ Certain	□ No
Answer: The correct answer is "Most Likely." The probability of winning is $\frac{4}{5}$, which means you have the chance to win 4 games out of 5 games played. So, it's Most Likely.	Answer: The correct answer is "Yes." The probabilis $\frac{3}{4}$, which means you have the chance to win 3 games played. So it is most likely. Therefore, it's follow Louis's advice and play.
MCQ 27: The probability of winning a game is $\frac{1}{2}$. Find the word to describe this probability.	MCQ 31: Louis advises you to play because the winning this game is $\frac{1}{4}$. Do you follow his advice
□ Impossible	☐ Yes
☐ Less Likely	⊠ No
⊠ Even Chance	Answer: The correct answer is "No." The probab is $\frac{1}{4}$, which means you have the chance to win a games played. So it is less likely. Therefore, it's
☐ Most Likely	to follow Louis's advice and play. MCO 32: The probability of succeeding a second sec
□ Certain	MCQ 32: The probability of succeeding a part Louis and $\frac{3}{4}$ for Hugo. Which player do you che penalty?
Answer: The correct answer is "Even Chance." The probability of	□ Louis
winning is $\frac{1}{2}$, which means you have the chance to win 1 game out of 2 games played. So, it's an Even Chance.	⊠ Hugo
MCQ 28: The probability of winning a game is 0. Find the word to describe this probability.	Answer: The correct answer is "Hugo." The succeeding for Louis is $\frac{1}{2}$, which means he has to succeed. For Hugo, it's $\frac{3}{4}$, which means he to succeed because he has the chance to succeed penalties. So, Hugo is the better choice to take to
⊠ Impossible	
☐ Less Likely	MCQ 33: The probability of succeeding a p
☐ Even Chance	Louis and $\frac{3}{5}$ for Hugo. Which player do you che penalty?
☐ Most Likely	□ Louis
\square Certain	⊠ Hugo
Answer: The correct answer is "Impossible." The probability of winning is 0, which means you have no chance to win the game. So, it's Impossible.	Answer: The correct answer is "Hugo." The succeeding for Louis is $\frac{1}{4}$, which means he is less because he has the chance to succeed in 1 out of
MCQ 29: The probability of winning a game is 1. Find the word to describe this probability.	Hugo, it's $\frac{3}{5}$, which means he is most likely to she has the chance to succeed in 3 out of 5 penalt the better choice to take the penalty.
□ Impossible	F EQUALLY LIKELY
☐ Less Likely	E 1 EINDING DROPARILITIES IN A CASIN
\square Even Chance	F.1 FINDING PROBABILITIES IN A CASIN
☐ Most Likely	Ex 34: You spin the casino spinner shown below probability of the event "getting a 2".
⊠ Certain	3 2 1

BILITIES

he probability of

bility of winning games out of 4 s a good idea to

he probability of e?

oility of winning 1 game out of 4 not a good idea

penalty is $\frac{1}{2}$ for oose to take the

probability of an even chance e is most likely ed in 3 out of 4 the penalty.

penalty is $\frac{1}{4}$ for oose to take the

probability of likely to succeed 4 penalties. For succeed because ties. So, Hugo is

NO SPINNER

w. Calculate the

it's Certain.

Answer: The correct answer is "Certain." The probability of winning is 1, which means you will definitely win the game. So,

$$P("getting a 2") = \boxed{\frac{1}{9}}$$

Answer:

- The number of outcomes in the universe when spinning the casino spinner is 9, since there are 9 sections (0 to 8).
- The number of outcomes for the event "getting a 2" is 1, as there is one section labeled 2 on the spinner.
- Therefore, the probability of getting a 2 is given by:

$$P("getting a 2") = \frac{\text{number of outcomes in the event}}{\text{number of outcomes in the universe}}$$
$$= \frac{1}{0}$$

Ex 35: You spin the casino spinner shown below. Calculate the probability of the event "not getting a 4".

$$P("\text{not getting a 4"}) = \boxed{\frac{8}{9}}$$

Answer:

- The number of outcomes in the universe when spinning the casino spinner is 9, since there are 9 sections (0 to 8).
- The number of outcomes for the event "not getting a 4" is 8, as there are eight sections that are not 4: 0, 1, 2, 3, 5, 6, 7, and 8.
- Therefore, the probability of not getting a 4 is given by:

$$P("\text{not getting a 4"}) = \frac{\text{number of outcomes in the event}}{\text{number of outcomes in the universe}}$$

$$= \frac{8}{9}$$

Ex 36: You spin the casino spinner shown below. Calculate the probability of the event "red".

$$P("\mathrm{red}") = \boxed{\frac{4}{9}}$$

Answer:

- The number of outcomes in the universe when spinning the casino spinner is 9, since there are 9 sections (0 to 8).
- The number of outcomes for the event "red" is 4, as there are four red sections on the spinner: 2, 4, 6, and 8.

• Therefore, the probability of landing on a red section is given by:

$$P("red") = \frac{\text{number of outcomes in the event}}{\text{number of outcomes in the universe}}$$
$$= \frac{4}{9}$$

Ex 37: You spin the casino spinner shown below. Calculate the probability of the event "getting an odd number".

$$P("getting an odd number") = \boxed{\frac{4}{9}}$$

Answer:

- The number of outcomes in the universe when spinning the casino spinner is 9, since there are 9 sections (0 to 8).
- The number of outcomes for the event "getting an odd number" is 4, as there are four odd numbers on the spinner: 1, 3, 5, and 7.
- Therefore, the probability of getting an odd number is given by:

$$P("odd number") = \frac{\text{number of outcomes in the event}}{\text{number of outcomes in the universe}}$$
$$= \frac{4}{6}$$

Ex 38: You spin the casino spinner shown below. Calculate the probability of the event "not getting red".

$$P("not getting red") = \boxed{\frac{5}{9}}$$

Answer:

- The number of outcomes in the universe when spinning the casino spinner is 9, since there are 9 sections (0 to 8).
- The number of outcomes for the event "not getting red" is 5, as there are five sections that are not red: 0, 1, 3, 5, and 7.
- Therefore, the probability of not getting red is given by:

$$P("not getting red") = \frac{\text{number of outcomes in the event}}{\text{number of outcomes in the universe}}$$
$$= \frac{5}{9}$$

F.2 FINDING PROBABILITIES IN A DICE EXPERIMENT

Ex 39: If you roll a die, what is the probability of the event "getting a 3"?

$$P("getting a 3") = \boxed{\frac{1}{6}}$$

Answer: There is 1 outcome (3) out of 6 possible outcomes, so the probability is $\frac{1}{6}$.

Ex 40: If you roll a die, what is the probability of the event "getting a 5 or 6"?

$$P("getting a 5 or 6") = \boxed{\frac{1}{3}}$$

Answer: There are 2 outcomes (5 or 6) out of 6 possible outcomes, so the probability is $\frac{2}{6} = \frac{1}{3}$.

Ex 41: If you roll a die, what is the probability of the event "getting a number greater than or equal to 4"?

$$P("number \ge 4") = \boxed{\frac{1}{2}}$$

Answer: There are 3 outcomes (4, 5, or 6) out of 6 possible outcomes, so the probability is $\frac{3}{6} = \frac{1}{2}$.

Ex 42: If you roll a die, what is the probability of the event "even number"?

$$P("even number") = \boxed{\frac{1}{2}}$$

Answer: There are 3 outcomes (2, 4, or 6) out of 6 possible outcomes, so the probability is $\frac{3}{6} = \frac{1}{2}$.

Ex 43: If you roll a die, what is the probability of the event "not getting a 6"?

$$P("$$
not getting a $6") = \boxed{\frac{5}{6}}$

Answer: There are 5 outcomes (1, 2, 3, 4, or 5) out of 6 possible outcomes, so the probability is $\frac{5}{6}$.

Ex 44: If you roll a die, what is the probability of the event "not getting an odd number"?

$$P("not getting an odd number") = \boxed{\frac{1}{2}}$$

Answer: There are 3 outcomes (2, 4, or 6) out of 6 possible outcomes, so the probability is $\frac{3}{6} = \frac{1}{2}$.

G COMPLEMENT RULE

G.1 APPLYING THE COMPLEMENT RULE

Ex 45: I toss a fair coin. The probability of getting heads is $\frac{1}{2}$. Find the probability of getting tails.

$$P("Getting tails") = \boxed{\frac{1}{2}}$$

Answer:

- The probability of getting heads is $\frac{1}{2}$.
- The event "Getting tails" is the complement of "Getting heads."
- Using the complement rule:

$$P("Getting tails") = 1 - P("Getting heads")$$

= $1 - \frac{1}{2}$
= $\frac{1}{2}$

• So, the probability of getting tails is $\frac{1}{2} = 50\%$.

Ex 46: A teacher told a joke in class: "Why was the math book sad? Because it had too many problems!" The probability that a student laughs at the joke is 70%.

Find the probability that a student does not laugh at the joke.

$$P("Not laughing") = \boxed{30}\%$$

Answer:

- The probability that a student laughs at the joke is 70%.
- The event "Not laughing" is the complement of "Laughing."
- Using the complement rule:

$$P("Not laughing") = 1 - P("Laughing")$$

= $100\% - 70\%$
= 30%

• Therefore, the probability that a student does not laugh at the joke is 30%.

Ex 47: I randomly select a student in the class. The probability that a girl is selected is $\frac{9}{10}$.

Find the probability that a boy is selected.

$$P("Selecting a boy") = \boxed{\frac{1}{10}}$$

Answer:

- The probability that a girl is selected is $\frac{9}{10}$.
- The event "Selecting a boy" is the complement of "Selecting a girl."
- Using the complement rule:

$$P("Selecting a boy") = 1 - P("Selecting a girl")$$

= $1 - \frac{9}{10}$
= $\frac{1}{10}$

• So, the probability that a boy is selected is $\frac{1}{10} = 10\%$.

Ex 48: The weather forecast predicts that there is a 70% chance of rain tomorrow.

Find the probability that it will not rain tomorrow.

$$P("\text{No rain"}) = \boxed{30}\%$$

Answer:

- The probability that it will rain tomorrow is 70%.
- The event "No rain" is the complement of "Rain".
- Using the complement rule:

$$P("\text{No rain"}) = 1 - P("\text{Rain"})$$

= 100% - 70%
= 30%

• Therefore, the probability that it will not rain tomorrow is 30%.

Ex 49: In a loto game, the probability of winning is $\frac{1}{100}$. Find the probability of losing.

$$P("Losing") = \boxed{\frac{99}{100}}$$

Answer:

- The probability of winning is $\frac{1}{100}$.
- The event "Losing" is the complement of "Winning."
- Using the complement rule:

$$P("Losing") = 1 - P("Winning")$$

$$= 1 - \frac{1}{100}$$

$$= \frac{100}{100} - \frac{1}{100}$$

$$= \frac{99}{100}$$

• So, the probability of losing is $\frac{99}{100} = 99\%$.

H EXPERIMENTAL PROBABILITY

H.1 CALCULATING EXPERIMENTAL PROBABILITIES IN PERCENTAGE FORM

Ex 50: During a classroom experiment, Ethan flips a coin 50 times and records that it lands on heads 30 times. Calculate the experimental probability that the coin lands on heads, and express the result in percentage form.

$$P("landing on heads") \approx 60 \%$$

Answer:

- The total number of trials in the experiment is 50, since Ethan flipped the coin 50 times.
- The number of successful outcomes for the event "landing on heads" is 30, as the coin landed on heads 30 times.

• Calculate the experimental probability:

$$P("landing on heads") \approx \frac{\text{number of successful outcomes}}{\text{total number of trials}}$$

$$\approx \frac{30}{50}$$

$$\approx 30 \div 50$$

$$\approx 0.6$$

$$\approx 0.6 \times 100\%$$

$$\approx 60\%$$

Ex 51: During a week of basketball practice, Mia made 45 out of 60 free-throw attempts. Estimate the experimental probability that Mia will make her next free-throw attempt, and express the result in percentage form.

$$P(\text{"making the next attempt"}) \approx 75\%$$

Answer.

- The total number of trials in the experiment is 60, since Mia made 60 free-throw attempts.
- The number of successful outcomes for the event "making the next attempt" is 45, as Mia successfully made 45 free-throws.
- Calculate the experimental probability:

$$P("making the next attempt") \approx \frac{\text{number of successful outcom}}{\text{total number of trials}}$$

$$= \frac{45}{60}$$

$$= 45 \div 60$$

$$= 0.75$$

$$= 0.75 \times 100\%$$

=75%

Ex 52: During a week, the school cafeteria recorded that out of 150 students, 120 chose a vegetarian meal. Estimate the experimental probability that the next student will choose a vegetarian meal, and express the result in percentage form.

$$P(\text{choosing a vegetarian meal}) \approx 80\%$$

Answer.

- The total number of trials in the experiment is 150, since 150 students were recorded.
- The number of successful outcomes for the event "choosing a vegetarian meal" is 120, as 120 students chose a vegetarian meal.
- Calculate the experimental probability:

$$P("vegetarian meal") \approx \frac{\text{number of successful outcomes}}{\text{total number of trials}}$$

$$= \frac{120}{150}$$

$$= 120 \div 150$$

$$= 0.8$$

$$= 0.8 \times 100\%$$

$$= 80\%$$

Ex 53: Over the course of a year, it rained on 146 days out of 365 recorded days. Estimate the experimental probability that it will rain, and express the result in percentage form.

$$P("raining") \approx 40\%$$

Answer:

- The total number of trials in the experiment is 365, since 365 days were recorded.
- The number of successful outcomes for the event "raining" is 146, as it rained on 146 days.
- Calculate the experimental probability:

$$P("raining") \approx \frac{\text{number of successful outcomes}}{\text{total number of trials}}$$

$$= \frac{146}{365}$$

$$= 146 \div 365$$

$$= 0.4$$

$$= 0.4 \times 100\%$$

$$= 40\%$$

H.2 CONDUCTING EXPERIMENTS TO ESTIMATE PROBABILITIES

Ex 54: In a experiment, you are asked to toss a fair coin at least 30. Follow these steps:

- 1. Note the number of times the coin lands on heads.
- 2. Note the total number of trials (tosses).
- 3. Calculate the experimental probability that the coin lands on heads, and express the result in decimal form.

Answer: To demonstrate the process, let's assume a sample result from the experiment: I conducted these experiments and noted each result using tally marks.

- 1. Number of heads = \|\|\|\|\|\|\|\|\| Number of heads = 18
- 2. Number of trials = 40 Number of trials = 40
- 3. Calculate the experimental probability that the coin lands on heads:

on heads:
$$P("landing on heads") \approx \frac{\text{number of successful outcomes}}{\text{total number of trials}}$$

$$\approx \frac{18}{40}$$

$$\approx 18 \div 40$$

$$\approx 0.45$$

This is a sample result; your actual probability will depend on your experiment's outcomes.

Ex 55: In a classroom experiment, you are asked of your friends at least 10 to choose randomly a single number from 1, 2, 3, 4, or 5. Follow these steps:

- 1. Note the number of times the answer is 5.
- 2. Note the total number of trials (friends asked).
- 3. Calculate the experimental probability that a friend chooses the number 5, and express the result in decimal form.

Answer: To demonstrate the process, let's assume a sample result from the experiment: I conducted this survey by asking 40 friends, and I noted each result using tally marks.

- 1. Number of times the answer is 5 = ||||||||||||Number of times the answer is 5 = 12
- 3. Calculate the experimental probability that a friend chooses the number 5:

$$P("\text{choosing the number 5"}) \approx \frac{\text{number of successful outcomes}}{\text{total number of trials}}$$

$$\approx \frac{12}{40}$$

$$\approx 12 \div 40$$

$$\approx 0.3$$

This is a sample result; your actual probability will depend on your experiment's outcomes.