PROBABILITY

Ever wondered if it'll rain tomorrow or if you'll win a game? That's probability! It's a math way to guess how likely things are to happen.

A ALGEBRA OF EVENTS

A.1 SAMPLE SPACES

Definition Outcome

An **outcome** is one possible result of a random experiment.

Ex: What are the outcomes when you flip a coin?

Answer: The outcomes are Heads (H)=and Tails <math>(T)=<math><math>

Ex: What are the outcomes when you roll a six-sided die?

Answer: The outcomes are 1 ,3 ,4 ,4 ,5 ,5 ,and 6

Definition Sample Space

The sample space is the set of all possible outcomes of a random experiment.

Ex: What's the sample space when you flip a coin?

Answer: The sample space is $\{\text{Heads, Tails}\} = \{\{\text{Span}, \text{Span}\}\}$, or just $\{\text{H, T}\}$ for short.

Ex: What's the sample space when you roll a six-sided die?

Answer: The sample space is $\{1, 2, 3, 4, 5, 6\} = \{$

A.2 EVENTS

Definition Event

Un événement est un sous-ensemble des issues possibles de l'univers. We write it E.

Ex: In the experiment of rolling a die, find E the event of rolling an even number.

Answer: Among the outcomes of the sample space $\{1, 2, 3, 4, 5, 6\} = \{1$

A.3 COMPLEMENTARY EVENTS

Ever wonder what happens if you look for everything **except** a certain event? That's where the complementary event comes in! It's just everything in the sample space that isn't in your event. We usually write it as E' ("E-prime").

Definition Complementary Event

The **complementary event** of an event E is all the outcomes in the sample space that are **not** in E. We write it E'.

Ex: In the experiment of rolling a die, let E the event of rolling an even number. Find E'.

Answer: The sample space is $\{1, 2, 3, 4, 5, 6\} = \{(1, 2, 3, 4, 5, 6)\} = \{(1, 2, 3, 4, 5, 6)\} = \{(1, 3, 5)\}$ and $E = \{2, 4, 6\} = \{(1, 3, 5)$

A.4 MULTI-STEP RANDOM EXPERIMENTS

Method Representations of Multi-Step Random Experiments

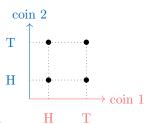
When an experiment involves more than one step, we can represent the sample space (the set of all possible outcomes) in several ways:

- using a grid (to visually map combinations along two axes),
- using a table (to organize outcomes in rows and columns),
- using a tree diagram (to show each sequential step), or
- by **listing** all possible outcomes.

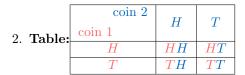
Ex: For the random experiment of tossing two coins, display the sample space by:

- 1. using a grid
- 2. using a table
- 3. using a tree diagram
- 4. listing all possible outcomes

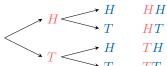
Answer:



1. **Grid:**



coin 1 coin 2 outcomes



- 3. Tree diagram:
- 4. List:{HH, HT, TH, TT}

A.5 E OR F

Definition E or F

The union of two events E and F, denoted as E or F or $E \cup F$, is the event that occurs if at least one of the events E or F happens (i.e., if E occurs, or F occurs, or both occur).

Ex: Consider the roll of a standard six-sided die.

Let event E be the event of rolling an even number: $E = \{2,4,6\}$.

Let event F be the event of rolling a number less than 4: $F = \{1, 2, 3\}$.

Find the event E or F.

Answer: E or F includes all outcomes from both event sets.

So, E or $F = E \cup F = \{1, 2, 3, 4, 6\}$.

A.6 E AND F

Definition E and F —

The intersection of two events E and F, denoted as E and F or $E \cap F$, is the set of all outcomes that are common to both E and F. The event E and F occurs if and only if both E and F happen simultaneously.

Ex: Consider the roll of a standard six-sided die.

Let event E be the event of rolling an odd number: $E = \{1, 3, 5\}$.

Let event F be the event of rolling a number less than 4: $F = \{1, 2, 3\}$.

Find the event E and F.

Answer: E and F includes all outcomes that are common to both E and F. So, E and $F = E \cap F = \{1, 3\}$.

A.7 MUTUALLY EXCLUSIVE

Definition Mutually Exclusive _

Two events E and F are said to be **mutually exclusive** if they cannot occur at the same time. In other words, the occurrence of event E excludes the possibility of event F occurring, and vice versa. This is mathematically represented as:

$$E$$
 and $F = E \cap F = \emptyset$,

where \emptyset denotes the empty set, indicating that there are no outcomes common to both E and F.

Ex: Consider the roll of a standard six-sided die.

Let event E be the event of rolling an odd number: $E = \{1, 3, 5\}$.

Let event F be the event of rolling an even number: $F = \{2, 4, 6\}$.

Show that E and F are mutually exclusive.

Answer: There are no outcomes common to both E and F:

$$E \cap F = \emptyset$$
.

Thus, the events E and F are mutually exclusive.

A.8 VENN DIAGRAM

Definition Correspondence Between Set Theory and Probabilistic Vocabulary

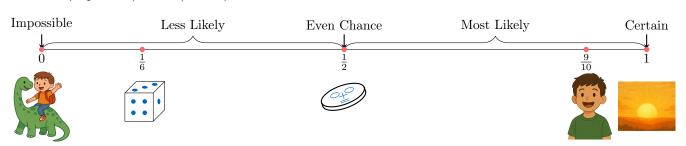
Notation	Set Vocabulary	Probabilistic Vocabulary	Venn Diagram	
U	Universal set	Sample space	U	
x	Element of U	Outcome	U	x
Ø	Empty set	Impossible event		
E	Subset of U	Event	U	F.
$x \in E$	x is an element of E	x is an outcome of E	U	
E'	Complement of E in U	Complement of E in U	U	E'
$E ext{ or } F$	Union of E and F : $E \cup F$	$E ext{ or } F$	U	E E OT F
E and F	Intersection of E and F : $E \cap F$	E and F	U	E and F
$E \cap F = \emptyset$	E and F are disjoint	E and F are mutually exclusive	U	F F

B PROBABILITY

B.1 PROBABILITY AXIOMS

Definition **Probability** —

The **probability** of an event E, written P(E), is a number that tells us how likely the event is to happen. It's always between 0 (impossible) and 1 (certain).



Ex: The probability of an event "even chance" can be represented as:

• Fraction: $\frac{1}{2}$

• **Decimal**: To convert the fraction to a decimal, divide the numerator by the denominator: $1 \div 2 = 0.5$.

• **Percentage**: To convert the decimal to a percentage, multiply by 100%: $0.5 \times 100\% = 50\%$.

Definition Probability Axioms .

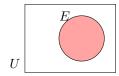
P is a **probability** if:

• $0 \le P(E) \le 1$, for any event E,

• P(U) = 1,

• If E and F are mutually exclusive events, then P(E or F) = P(E) + P(F).

• The probability of an event E, P(E), is represented by the shaded area of the event in a Venn diagram:

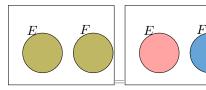


• The first axiom states that the probability of an event E is a value between 0 and 1, inclusive.

• The second axiom states that the probability of the sample space U is equal to 1, i.e., 100%. This is because the sample space U includes all possible outcomes of a random experiment, so the event U always occurs, and P(U) = 1. In a Venn diagram, this is represented as the entire shaded area of the sample space:

$$P(U) = 1$$

• The third axiom states that if two events are mutually exclusive (i.e., they cannot occur simultaneously), then the probability of their union is the sum of their individual probabilities. In a Venn diagram, for two mutually exclusive events (with no overlap), the total area of their union is the sum of the individual areas:



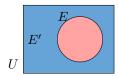
$$P(E \text{ or } F) = P(E) + P(F)$$

B.2 PROBABILITY RULES

Proposition Complement Rule .

For any event E with complementary event E',

$$P(E) + P(E') = 1$$



Also,

$$P(E') = 1 - P(E)$$

Ex: Farid has a 0.8 (80%) chance of finishing his homework on time tonight (event E). What's the chance he **doesn't** finish on time?

Answer: The complementary event E' is "Farid does **not** finish his homework on time." By the complement rule:

$$P(E') = 1 - P(E)$$

= 1 - 0.8
= 0.2

So, there's a 0.2 (or 20%) chance he doesn't finish on time!

Proposition Addition Law of Probability -

For any events E and F,

$$P(E \text{ or } F) = P(E) + P(F) - P(E \text{ and } F)$$

Ex: A local high school is holding a talent show where students can participate in singing, dancing, or both. The probability that a randomly selected student participates in singing is 0.4, the probability that a student participates in dancing is 0.3, and the probability that a student participates in both singing and dancing is 0.1. Find the probability that a randomly selected student participates in either singing or dancing.

Answer:

- Let S be the event "participates in singing", and D the event "participates in dancing". We are given P(S) = 0.4, P(D) = 0.3, and P(S and D) = 0.1.
- The probability that a student participates in either singing or dancing is P(S or D).
- By the addition law of probability:

$$P(S \text{ or } D) = P(S) + P(D) - P(S \text{ and } D)$$

= 0.4 + 0.3 - 0.1
= 0.6

• Therefore, the probability is 0.6.

B.3 EQUALLY LIKELY

Definition Equally Likely

When all outcomes are equally likely, the probability of an event E is:

$$P(E) = \frac{\text{number of outcomes in the event}}{\text{number of outcomes in the sample space}}$$

$$= \frac{n\left(E\right)}{n\left(U\right)}$$

Ex: What's the probability of rolling an even number with a fair six-sided die?

Answer:

- Sample space = $\{1, 2, 3, 4, 5, 6\}$ (6 outcomes).
- $E = \{2, 4, 6\}$ (3 outcomes).

$$P(E) = \frac{3}{6}$$
$$= \frac{1}{2}$$

So, there's a $\frac{1}{2}$ chance (or 50%) of rolling an even number!

B.4 PROBABILITY OF INDEPENDENT EVENTS

Independent events are situations where what happens in one event does **not** affect what happens in the other. For example: rolling two dice at the same time. The result of the first die doesn't change the chances for the second die—they are independent!

Definition Independent Events -

Two events, A and B, are **independent** if the chance of both happening is just the product of their individual chances. Mathematically:

$$P(A \text{ and } B) = P(A) \times P(B)$$

Ex: Imagine you do two totally separate actions:

- 1. Flipping a fair coin (heads or tails).
- 2. Rolling a fair six-sided die (1, 2, 3, 4, 5, or 6).

What's the probability of getting tails **and** rolling a number greater than 4 (like a 5 or 6)?

Answer: Let's break it down:

- These events are independent, so we multiply their probabilities.
- For the coin: You've got two options—heads or tails—and they're equally likely. So, $P("tails") = \frac{1}{2}$.
- For the die: There are six sides, and "greater than 4" means 5 or 6. That's 2 out of 6 possibilities, so $P("number > 4") = \frac{2}{6} = \frac{1}{3}$.
- Now, combine them:

$$P(\text{"tails" and "number} > 4") = P(\text{"tails"}) \times P(\text{"number} > 4")$$

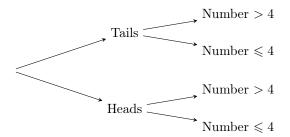
$$= \frac{1}{2} \times \frac{1}{3}$$

$$= \frac{1}{6}$$

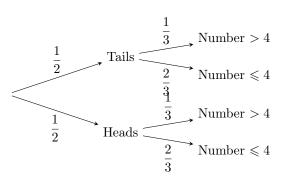
• Result: There's a $\frac{1}{6}$ chance of landing tails and rolling a 5 or 6.

Method Finding the Probability of Two Independent Events using a Probability Tree Diagram

1. Draw the tree: Start with two branches for the coin: "Heads" and "Tails." From each, draw two branches for the die: "Number > 4" (5 or 6) and "Number ≤ 4 " (1, 2, 3, 4).

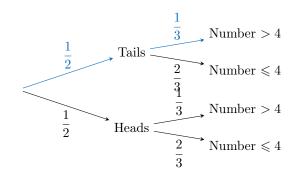


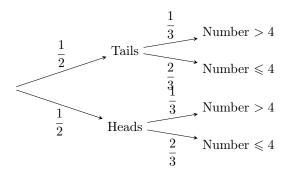
2. Label probabilities: Each coin branch is $\frac{1}{2}$. For the die, "Number > 4" is $\frac{1}{3}$ (2 out of 6), "Number \leq 4" is $\frac{4}{6} = \frac{2}{3}$.



3. Multiply the probabilities along the path: For "Tails" and "Number > 4":

$$\frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$





B.5 EXPERIMENTAL PROBABILITY

Theorem Law of Large Numbers

The probability of an event E can be estimated using the formula:

$$P(E) \approx \frac{\text{number of times the event occurs}}{\text{number of trials}}$$

8

Here, "trials" refer to the number of times the experiment is repeated.

Remark More trials yield better estimates.