MATRIX DIAGONALISATION

A EIGENVALUES AND EIGENVECTORS

A.1 CALCULATING EIGENVALUES

Ex 1: Find the eigenvalues of the matrix $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.

Answer: We solve the characteristic equation $\det(\mathbf{A} - \lambda \mathbf{I}) = 0$:

$$\det \begin{pmatrix} 2-\lambda & 1\\ 1 & 2-\lambda \end{pmatrix} = 0$$
$$(2-\lambda)(2-\lambda) - (1)(1) = 0$$
$$(4-4\lambda+\lambda^2) - 1 = 0$$
$$\lambda^2 - 4\lambda + 3 = 0$$

We solve the quadratic equation using the discriminant $\Delta = b^2 - 4ac$ with a = 1, b = -4, and c = 3:

$$\Delta = (-4)^2 - 4(1)(3) = 16 - 12 = 4$$

Since $\Delta > 0$, there are two distinct real roots:

$$\lambda = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{4 \pm \sqrt{4}}{2} = \frac{4 \pm 2}{2}$$
 $\lambda_1 = \frac{4+2}{2} = 3$ and $\lambda_2 = \frac{4-2}{2} = 1$

So, the eigenvalues are $\lambda_1 = 3$ and $\lambda_2 = 1$.

Ex 2: Find the eigenvalues of the matrix $\mathbf{B} = \begin{pmatrix} 4 & 3 \\ 2 & 5 \end{pmatrix}$.

Answer: We solve the characteristic equation $det(\mathbf{B} - \lambda \mathbf{I}) = 0$:

$$\det \begin{pmatrix} 4 - \lambda & 3 \\ 2 & 5 - \lambda \end{pmatrix} = 0$$
$$(4 - \lambda)(5 - \lambda) - (3)(2) = 0$$
$$(20 - 9\lambda + \lambda^2) - 6 = 0$$
$$\lambda^2 - 9\lambda + 14 = 0$$

We solve using the discriminant Δ with $a=1,\ b=-9,$ and c=14:

$$\Delta = (-9)^2 - 4(1)(14) = 81 - 56 = 25$$

The roots are:

$$\lambda = \frac{-(-9) \pm \sqrt{25}}{2(1)} = \frac{9 \pm 5}{2}$$

$$\lambda_1 = \frac{9+5}{2} = \frac{14}{2} = 7$$
 and $\lambda_2 = \frac{9-5}{2} = \frac{4}{2} = 2$

So, the eigenvalues are $\lambda_1 = 7$ and $\lambda_2 = 2$.

Ex 3: Find the eigenvalues of the matrix $\mathbf{C} = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$.

Answer: We solve the characteristic equation $\det(\mathbf{C} - \lambda \mathbf{I}) = 0$:

$$\det\begin{pmatrix} 1 - \lambda & 2\\ 3 & 2 - \lambda \end{pmatrix} = 0$$
$$(1 - \lambda)(2 - \lambda) - (2)(3) = 0$$
$$(2 - \lambda - 2\lambda + \lambda^2) - 6 = 0$$
$$\lambda^2 - 3\lambda - 4 = 0$$

We solve using the discriminant Δ with $a=1,\ b=-3,$ and c=-4:

$$\Delta = (-3)^2 - 4(1)(-4) = 9 + 16 = 25$$

Since $\Delta > 0$, there are two distinct real roots:

$$\lambda = \frac{-(-3) \pm \sqrt{25}}{2(1)} = \frac{3 \pm 5}{2}$$

$$\lambda_1 = \frac{3+5}{2} = 4$$
 and $\lambda_2 = \frac{3-5}{2} = -1$

So, the eigenvalues are $\lambda_1 = 4$ and $\lambda_2 = -1$.

Ex 4: Find the eigenvalues of the matrix $\mathbf{D} = \begin{pmatrix} 3 & -2 \\ -1 & 2 \end{pmatrix}$.

Answer: We solve the characteristic equation $\det(\mathbf{D} - \lambda \mathbf{I}) = 0$:

$$\det\begin{pmatrix} 3-\lambda & -2\\ -1 & 2-\lambda \end{pmatrix} = 0$$
$$(3-\lambda)(2-\lambda) - (-2)(-1) = 0$$
$$(6-3\lambda - 2\lambda + \lambda^2) - 2 = 0$$
$$\lambda^2 - 5\lambda + 4 = 0$$

We solve using the discriminant Δ with $a=1,\ b=-5,$ and c=4:

$$\Delta = (-5)^2 - 4(1)(4) = 25 - 16 = 9$$

The roots are:

$$\lambda = \frac{-(-5) \pm \sqrt{9}}{2(1)} = \frac{5 \pm 3}{2}$$

$$\lambda_1 = \frac{5+3}{2} = 4 \text{ and } \lambda_2 = \frac{5-3}{2} = 1$$

So, the eigenvalues are $\lambda_1 = 4$ and $\lambda_2 = 1$.

Ex 5: Find the eigenvalues of the triangular matrix $\mathbf{E} = \begin{pmatrix} 5 & 2 \\ 0 & -3 \end{pmatrix}$.

Answer: We solve the characteristic equation $\det(\mathbf{E} - \lambda \mathbf{I}) = 0$:

$$\det \begin{pmatrix} 5 - \lambda & 2 \\ 0 & -3 - \lambda \end{pmatrix} = 0$$
$$(5 - \lambda)(-3 - \lambda) - (2)(0) = 0$$
$$(5 - \lambda)(-3 - \lambda) - 0 = 0$$
$$(5 - \lambda)(-3 - \lambda) = 0$$

Since the equation is already in factored form, we can read the roots directly without calculating the discriminant:

$$5 - \lambda = 0 \implies \lambda = 5$$
$$-3 - \lambda = 0 \implies \lambda = -3$$

So, the eigenvalues are $\lambda_1 = 5$ and $\lambda_2 = -3$.

Note: For a triangular matrix, the eigenvalues are the diagonal elements.

A.2 FINDING AN EIGENVALUE FROM AN EIGENVECTOR

Ex 6: Consider the matrix $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$ and the vector $\mathbf{x} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

- 1. Calculate the product $\mathbf{A}\mathbf{x}$.
- 2. Hence, determine the eigenvalue λ associated with the eigenvector \mathbf{x} .

Answer:

1. We calculate the matrix multiplication:

$$\mathbf{A}\mathbf{x} = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
$$= \begin{pmatrix} 1(1) + 1(2) \\ 4(1) + 1(2) \end{pmatrix}$$
$$= \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$

2. We look for a scalar λ such that $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$.

$$\begin{pmatrix} 3 \\ 6 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$3 \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Therefore, the eigenvalue is $\lambda = 3$.

Ex 7: Consider the matrix $\mathbf{B} = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}$ and the vector $\mathbf{u} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

- 1. Calculate the product **Bu**.
- 2. Hence, determine the eigenvalue λ associated with the eigenvector \mathbf{u} .

Answer:

1. We calculate the matrix multiplication:

$$\mathbf{Bu} = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} 3(1) + (-1)(1) \\ (-1)(1) + 3(1) \end{pmatrix}$$
$$= \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

2. We look for a scalar λ such that $\mathbf{B}\mathbf{u} = \lambda \mathbf{u}$.

$$\begin{pmatrix} 2\\2 \end{pmatrix} = \lambda \begin{pmatrix} 1\\1 \end{pmatrix}$$
$$2 \begin{pmatrix} 1\\1 \end{pmatrix} = \lambda \begin{pmatrix} 1\\1 \end{pmatrix}$$

Therefore, the eigenvalue is $\lambda = 2$.

Ex 8: Consider the matrix $\mathbf{C} = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix}$ and the vector $\mathbf{v} = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix}$ $\binom{1}{3}$.

- 1. Calculate the product Cv.
- 2. Hence, determine the eigenvalue λ associated with the eigenvector \mathbf{v} .

Answer:

1. We calculate the matrix multiplication:

$$\mathbf{Cv} = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
$$= \begin{pmatrix} 2(1) + (-1)(3) \\ 3(1) + (-2)(3) \end{pmatrix}$$
$$= \begin{pmatrix} -1 \\ -3 \end{pmatrix}$$

2. We look for a scalar λ such that $\mathbf{C}\mathbf{v} = \lambda \mathbf{v}$.

$$\begin{pmatrix} -1 \\ -3 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
$$-1 \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

Therefore, the eigenvalue is $\lambda = -1$.

A.3 CALCULATING EIGENVECTORS

Ex 9: Consider the matrix $\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix}$. One of the eigenvalues of this matrix is $\lambda = 4$.

Find the eigenvector $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$ corresponding to this eigenvalue.

Answer: Find an eigenvector for $\lambda = 4$:

$$(\mathbf{A} - 4\mathbf{I})\mathbf{x} = \mathbf{0}$$

$$\begin{pmatrix} \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix} - 4 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 3 - 4 & 2 \\ 2 & 0 - 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} -x + 2y \\ 2x - 4y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This gives -x + 2y = 0 and 2x - 4y = 0, so x = 2y. Letting y = t, we have x = 2t, so

$$\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2t \\ t \end{pmatrix} = t \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad t \neq 0.$$

Any vector of the form $t\binom{2}{1}$, $t \neq 0$, is an eigenvector corresponding to the eigenvalue 4

Ex 10: Consider the matrix $\mathbf{B} = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix}$. One of the eigenvalues of this matrix is $\lambda = 5$.

Find the eigenvector $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$ corresponding to this eigenvalue.

Answer: Find an eigenvector for $\lambda = 5$:

$$(\mathbf{B} - 5\mathbf{I})\mathbf{x} = \mathbf{0}$$

$$\begin{pmatrix} \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix} - 5 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 4 - 5 & 1 \\ 2 & 3 - 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} -x + y \\ 2x - 2y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This gives -x + y = 0 and 2x - 2y = 0, so y = x. Letting x = t, we have y = t, so

$$\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} t \\ t \end{pmatrix} = t \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad t \neq 0.$$

Any vector of the form $t \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $t \neq 0$, is an eigenvector corresponding to the eigenvalue 5.

Ex 11: Consider the matrix $\mathbf{C} = \begin{pmatrix} 5 & -1 \\ 2 & 2 \end{pmatrix}$. One of the eigenvalues of this matrix is $\lambda = 3$.

Find the eigenvector $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$ corresponding to this eigenvalue.

Answer: Find an eigenvector for $\lambda = 3$:

$$(\mathbf{C} - 3\mathbf{I})\mathbf{x} = \mathbf{0}$$

$$\begin{pmatrix} \begin{pmatrix} 5 & -1 \\ 2 & 2 \end{pmatrix} - 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 5 - 3 & -1 \\ 2 & 2 - 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 2x - y \\ 2x - y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This gives 2x - y = 0, so y = 2x. Letting x = t, we have y = 2t, so

$$\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} t \\ 2t \end{pmatrix} = t \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad t \neq 0.$$

Any vector of the form $t \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $t \neq 0$, is an eigenvector corresponding to the eigenvalue 3.

A.4 FINDING EIGENVALUES AND EIGENVECTORS

Ex 12: Consider the matrix $\mathbf{A} = \begin{pmatrix} 7 & -4 \\ 8 & -5 \end{pmatrix}$.

- 1. Find the eigenvalues λ_1 and λ_2 of matrix **A**.
- 2. Find the corresponding eigenvectors \mathbf{x}_1 and \mathbf{x}_2 .

1. Find Eigenvalues:

We solve the characteristic equation $det(\mathbf{A} - \lambda \mathbf{I}) = 0$:

$$\det\begin{pmatrix} 7 - \lambda & -4 \\ 8 & -5 - \lambda \end{pmatrix} = 0$$
$$(7 - \lambda)(-5 - \lambda) - (-4)(8) = 0$$
$$(-35 - 7\lambda + 5\lambda + \lambda^2) + 32 = 0$$
$$\lambda^2 - 2\lambda - 3 = 0$$

We solve the quadratic equation using the discriminant $\Delta =$ $b^2 - 4ac$ with a = 1, b = -2, and c = -3:

$$\Delta = (-2)^2 - 4(1)(-3) = 4 + 12 = 16$$

Since $\Delta > 0$, there are two distinct real roots:

$$\lambda = \frac{-(-2) \pm \sqrt{16}}{2(1)} = \frac{2 \pm 4}{2}$$

$$\lambda_1 = \frac{2+4}{2} = 3$$
 and $\lambda_2 = \frac{2-4}{2} = -1$

So, the eigenvalues are $\lambda_1 = 3$ and $\lambda_2 = -1$.

2. Find Eigenvectors:

• For $\lambda_1 = 3$:

$$(\mathbf{A} - 3\mathbf{I})\mathbf{x} = \mathbf{0}$$

$$\begin{pmatrix} \begin{pmatrix} 7 & -4 \\ 8 & -5 \end{pmatrix} - 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 7 - 3 & -4 \\ 8 & -5 - 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 4 & -4 \\ 8 & -8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 4x - 4y \\ 8x - 8y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This gives 4x - 4y = 0, so y = x. Letting x = t, we have y = t, so

$$\mathbf{x}_1 = \begin{pmatrix} t \\ t \end{pmatrix} = t \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad t \neq 0.$$

• For $\lambda_2 = -1$:

$$(\mathbf{A} - (-1)\mathbf{I})\mathbf{x} = \mathbf{0}$$

$$\begin{pmatrix} \begin{pmatrix} 7 & -4 \\ 8 & -5 \end{pmatrix} + 1 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 8 & -4 \\ 8 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 8x - 4y \\ 8x - 4y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This gives 8x - 4y = 0, or 2x = y. Letting x = t, we have y = 2t, so

$$\mathbf{x}_2 = \begin{pmatrix} t \\ 2t \end{pmatrix} = t \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad t \neq 0.$$

Ex 13: Consider the matrix $\mathbf{B} = \begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix}$.

- 1. Find the eigenvalues of matrix **B**.
- 2. Find the corresponding eigenvectors.

Answer:

1. Find Eigenvalues:

We solve the characteristic equation $det(\mathbf{B} - \lambda \mathbf{I}) = 0$:

$$\det \begin{pmatrix} 4 - \lambda & 1 \\ 1 & 4 - \lambda \end{pmatrix} = 0$$
$$(4 - \lambda)(4 - \lambda) - (1)(1) = 0$$
$$(16 - 8\lambda + \lambda^2) - 1 = 0$$
$$\lambda^2 - 8\lambda + 15 = 0$$

We solve the quadratic equation using the discriminant $\Delta =$ $b^2 - 4ac$ with a = 1, b = -8, and c = 15:

$$\Delta = (-8)^2 - 4(1)(15) = 64 - 60 = 4$$

Since $\Delta > 0$, there are two distinct real roots:

$$\lambda = \frac{-(-8) \pm \sqrt{4}}{2(1)} = \frac{8 \pm 2}{2}$$

$$\lambda_1 = \frac{8+2}{2} = 5$$
 and $\lambda_2 = \frac{8-2}{2} = 3$

So, the eigenvalues are $\lambda_1 = 5$ and $\lambda_2 = 3$.

2. Find Eigenvectors:

• For $\lambda_1 = 5$:

$$(\mathbf{B} - 5\mathbf{I})\mathbf{x} = \mathbf{0}$$

$$\begin{pmatrix} \begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix} - 5 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 4 - 5 & 1 \\ 1 & 4 - 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} -x + y \\ x - y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This gives -x + y = 0 and x - y = 0, so y = x. Letting x = t, we have y = t, so

$$\mathbf{x}_1 = \begin{pmatrix} t \\ t \end{pmatrix} = t \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad t \neq 0.$$

• For $\lambda_2 = 3$:

$$(\mathbf{B} - 3\mathbf{I})\mathbf{x} = \mathbf{0}$$

$$\begin{pmatrix} \begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix} - 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 4 - 3 & 1 \\ 1 & 4 - 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x + y \\ x + y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This gives x + y = 0, so y = -x. Letting x = t, we have y = -t, so

$$\mathbf{x}_2 = \begin{pmatrix} t \\ -t \end{pmatrix} = t \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad t \neq 0.$$

Ex 14: Consider the matrix $\mathbf{C} = \begin{pmatrix} 5 & -1 \\ 2 & 2 \end{pmatrix}$.

- 1. Find the eigenvalues of matrix **C**.
- 2. Find the corresponding eigenvectors.

Answer:

1. Find Eigenvalues:

We solve the characteristic equation $\det(\mathbf{C} - \lambda \mathbf{I}) = 0$:

$$\det \begin{pmatrix} 5 - \lambda & -1 \\ 2 & 2 - \lambda \end{pmatrix} = 0$$
$$(5 - \lambda)(2 - \lambda) - (-1)(2) = 0$$
$$(10 - 5\lambda - 2\lambda + \lambda^2) + 2 = 0$$
$$\lambda^2 - 7\lambda + 12 = 0$$

We solve the quadratic equation. The discriminant is $\Delta = (-7)^2 - 4(1)(12) = 49 - 48 = 1$.

$$\lambda = \frac{-(-7) \pm \sqrt{1}}{2} = \frac{7 \pm 1}{2}$$

$$\lambda_1 = \frac{8}{2} = 4 \quad \text{and} \quad \lambda_2 = \frac{6}{2} = 3$$

So, the eigenvalues are $\lambda_1 = 4$ and $\lambda_2 = 3$.

2. Find Eigenvectors:

• For $\lambda_1 = 4$:

$$(\mathbf{C} - 4\mathbf{I})\mathbf{x} = \mathbf{0}$$

$$\begin{pmatrix} \begin{pmatrix} 5 & -1 \\ 2 & 2 \end{pmatrix} - 4 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x - y \\ 2x - 2y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This gives x - y = 0, so x = y. Letting x = t, we have y = t, so

$$\mathbf{x}_1 = \begin{pmatrix} t \\ t \end{pmatrix} = t \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad t \neq 0.$$

• For $\lambda_2 = 3$:

$$(\mathbf{C} - 3\mathbf{I})\mathbf{x} = \mathbf{0}$$

$$\begin{pmatrix} \begin{pmatrix} 5 & -1 \\ 2 & 2 \end{pmatrix} - 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 2x - y \\ 2x - y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This gives 2x - y = 0, so y = 2x. Letting x = t, we have y = 2t, so

$$\mathbf{x}_2 = \begin{pmatrix} t \\ 2t \end{pmatrix} = t \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad t \neq 0.$$

B MATRIX DIAGONALISATION

B.1 VERIFYING MATRIX DIAGONALISATION

Ex 15: The matrix

$$\mathbf{A} = \begin{pmatrix} 7 & -4 \\ 8 & -5 \end{pmatrix}$$

has eigenvalues $\lambda_1=3$ and $\lambda_2=-1$ with corresponding eigenvectors

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $\mathbf{x}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Show that $\mathbf{P} = (\mathbf{x}_1 \mid \mathbf{x}_2)$ diagonalises \mathbf{A} .

Answer: To show that \mathbf{P} diagonalises \mathbf{A} , we must show that $\mathbf{P}^{-1}\mathbf{AP}$ is a diagonal matrix.

1. Form the matrix P:

$$\mathbf{P} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}.$$

2. Find the inverse P^{-1} :

$$\det(\mathbf{P}) = (1)(2) - (1)(1) = 1,$$

so $\mathbf{P}^{-1} = \frac{1}{1} \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}.$

3. Calculate $P^{-1}AP$:

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 7 & -4 \\ 8 & -5 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ 3 & -2 \end{pmatrix}$$
$$= \begin{pmatrix} 6 - 3 & -2 + 2 \\ -3 + 3 & 1 - 2 \end{pmatrix}$$
$$= \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}.$$

The result is the diagonal matrix

$$\mathbf{D} = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix},$$

which contains the eigenvalues on the diagonal. Thus, P diagonalises A.

Ex 16: The matrix

$$\mathbf{A} = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$$

has eigenvalues $\lambda_1 = 4$ and $\lambda_2 = 1$ with corresponding eigenvectors

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $\mathbf{x}_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

Show that $\mathbf{P} = (\mathbf{x}_1 \mid \mathbf{x}_2)$ diagonalises \mathbf{A} .

Answer: To show that \mathbf{P} diagonalises \mathbf{A} , we must show that $\mathbf{P}^{-1}\mathbf{AP}$ is a diagonal matrix.

1. Form the matrix P:

$$\mathbf{P} = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}.$$

2. Find the inverse P^{-1} :

$$\det(\mathbf{P}) = (1)(-2) - (1)(1) = -3,$$

so

$$\mathbf{P}^{-1} = \frac{1}{-3} \begin{pmatrix} -2 & -1 \\ -1 & 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}.$$

3. Calculate $P^{-1}AP$:

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}$$
$$= \frac{1}{3} \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ 4 & -2 \end{pmatrix}$$
$$= \frac{1}{3} \begin{pmatrix} 12 & 0 \\ 0 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}.$$

The result is the diagonal matrix

$$\mathbf{D} = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix},$$

which contains the eigenvalues on the diagonal. Thus, ${\bf P}$ diagonalises ${\bf A}.$

Ex 17: The matrix

$$\mathbf{A} = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}$$

has eigenvalues $\lambda_1 = 2$ and $\lambda_2 = 1$ with corresponding eigenvectors

$$\mathbf{x}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 and $\mathbf{x}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Show that $\mathbf{P} = (\mathbf{x}_1 \mid \mathbf{x}_2)$ diagonalises \mathbf{A} .

Answer: To show that \mathbf{P} diagonalises \mathbf{A} , we must show that $\mathbf{P}^{-1}\mathbf{AP}$ is a diagonal matrix.

1. Form the matrix P:

$$\mathbf{P} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}.$$

2. Find the inverse P^{-1} :

$$\det(\mathbf{P}) = (2)(1) - (1)(1) = 1,$$

so

$$\mathbf{P}^{-1} = \frac{1}{1} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}.$$

3. Calculate $P^{-1}AP$:

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ 2 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}.$$

The result is the diagonal matrix

$$\mathbf{D} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix},$$

which contains the eigenvalues on the diagonal. Thus, ${\bf P}$ diagonalises ${\bf A}.$

B.2 PERFORMING FULL MATRIX DIAGONALISATION

Ex 18: Consider the matrix $\mathbf{A} = \begin{pmatrix} 4 & 3 \\ 2 & -1 \end{pmatrix}$.

Find the diagonal matrix \mathbf{D} , the matrix \mathbf{P} and its inverse \mathbf{P}^{-1} such that $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.

Answer:

1. Find Eigenvalues:

We solve the characteristic equation $det(\mathbf{A} - \lambda \mathbf{I}) = 0$:

$$\det \begin{pmatrix} 4 - \lambda & 3 \\ 2 & -1 - \lambda \end{pmatrix} = 0$$
$$(4 - \lambda)(-1 - \lambda) - (3)(2) = 0$$
$$(-4 - 4\lambda + \lambda + \lambda^2) - 6 = 0$$
$$\lambda^2 - 3\lambda - 10 = 0$$
$$(\lambda - 5)(\lambda + 2) = 0$$

The eigenvalues are $\lambda_1 = 5$ and $\lambda_2 = -2$.

2. Find Eigenvectors:

• For $\lambda_1 = 5$:

$$(\mathbf{A} - 5\mathbf{I})\mathbf{x} = \mathbf{0}$$

$$\begin{pmatrix} 4 - 5 & 3 \\ 2 & -1 - 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 3 \\ 2 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This gives -x + 3y = 0, which simplifies to x = 3y. Letting y = t, we get x = 3t.

$$\mathbf{x} = \begin{pmatrix} 3t \\ t \end{pmatrix} = t \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \quad t \neq 0$$

We choose t = 1 to get $\mathbf{x}_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$.

• For $\lambda_2 = -2$:

$$(\mathbf{A} - (-2)\mathbf{I})\mathbf{x} = \mathbf{0}$$

$$\begin{pmatrix} 4+2 & 3 \\ 2 & -1+2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 6 & 3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This gives 2x + y = 0, which simplifies to y = -2x. Letting x = t, we get y = -2t.

$$\mathbf{x} = \begin{pmatrix} t \\ -2t \end{pmatrix} = t \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \quad t \neq 0$$

We choose t = 1 to get $\mathbf{x}_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

3. Construct Matrices:

$$\mathbf{D} = \begin{pmatrix} 5 & 0 \\ 0 & -2 \end{pmatrix} \quad \text{and} \quad \mathbf{P} = \begin{pmatrix} 3 & 1 \\ 1 & -2 \end{pmatrix}$$

Find P^{-1} :

$$\det(\mathbf{P}) = (3)(-2) - (1)(1) = -7$$
$$\mathbf{P}^{-1} = \frac{1}{-7} \begin{pmatrix} -2 & -1 \\ -1 & 3 \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix}$$

Ex 19: Consider the matrix $\mathbf{B} = \begin{pmatrix} 9 & -10 \\ 5 & -6 \end{pmatrix}$.

Find the diagonal matrix \mathbf{D} , the matrix \mathbf{P} and its inverse \mathbf{P}^{-1} such that $\mathbf{B} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.

Answer:

1. Find Eigenvalues:

We solve the characteristic equation $det(\mathbf{B} - \lambda \mathbf{I}) = 0$:

$$\det \begin{pmatrix} 9 - \lambda & -10 \\ 5 & -6 - \lambda \end{pmatrix} = 0$$
$$(9 - \lambda)(-6 - \lambda) - (-10)(5) = 0$$
$$(-54 - 9\lambda + 6\lambda + \lambda^2) + 50 = 0$$
$$\lambda^2 - 3\lambda - 4 = 0$$
$$(\lambda - 4)(\lambda + 1) = 0$$

The eigenvalues are $\lambda_1 = 4$ and $\lambda_2 = -1$.

2. Find Eigenvectors:

• For $\lambda_1 = 4$:

$$(\mathbf{B} - 4\mathbf{I})\mathbf{x} = \mathbf{0}$$

$$\begin{pmatrix} 5 & -10 \\ 5 & -10 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This gives 5x - 10y = 0, which simplifies to x = 2y. Letting y = t, we get x = 2t.

$$\mathbf{x} = \begin{pmatrix} 2t \\ t \end{pmatrix} = t \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad t \neq 0$$

We choose t = 1 to get $\mathbf{x}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

• For $\lambda_2 = -1$:

$$(\mathbf{B} - (-1)\mathbf{I})\mathbf{x} = \mathbf{0}$$

$$\begin{pmatrix} 10 & -10 \\ 5 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This gives 5x - 5y = 0, which simplifies to x = y. Letting y = t, we get x = t.

$$\mathbf{x} = \begin{pmatrix} t \\ t \end{pmatrix} = t \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad t \neq 0$$

We choose t = 1 to get $\mathbf{x}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

3. Construct Matrices:

$$\mathbf{D} = \begin{pmatrix} 4 & 0 \\ 0 & -1 \end{pmatrix} \quad \text{and} \quad \mathbf{P} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

Find P^{-1} :

$$\det(\mathbf{P}) = (2)(1) - (1)(1) = 1$$
$$\mathbf{P}^{-1} = \frac{1}{1} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$$

Ex 20: Consider the matrix $\mathbf{C} = \begin{pmatrix} 3 & 2 \\ 3 & -2 \end{pmatrix}$.

Find the diagonal matrix \mathbf{D} , the matrix $\dot{\mathbf{P}}$ and its inverse \mathbf{P}^{-1} such that $\mathbf{C} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.

Answer.

1. Find Eigenvalues:

We solve the characteristic equation $\det(\mathbf{C} - \lambda \mathbf{I}) = 0$:

$$\det\begin{pmatrix} 3 - \lambda & 2\\ 3 & -2 - \lambda \end{pmatrix} = 0$$
$$(3 - \lambda)(-2 - \lambda) - (2)(3) = 0$$
$$(-6 - 3\lambda + 2\lambda + \lambda^2) - 6 = 0$$
$$\lambda^2 - \lambda - 12 = 0$$
$$(\lambda - 4)(\lambda + 3) = 0$$

The eigenvalues are $\lambda_1 = 4$ and $\lambda_2 = -3$.

2. Find Eigenvectors:

• For $\lambda_1 = 4$:

$$(\mathbf{C} - 4\mathbf{I})\mathbf{x} = \mathbf{0}$$

$$\begin{pmatrix} 3 - 4 & 2 \\ 3 & -2 - 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 2 \\ 3 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This gives -x + 2y = 0, which simplifies to x = 2y. Letting y = t, we get x = 2t.

$$\mathbf{x} = \begin{pmatrix} 2t \\ t \end{pmatrix} = t \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad t \neq 0$$

We choose t = 1 to get $\mathbf{x}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

• For $\lambda_2 = -3$:

$$(\mathbf{C} - (-3)\mathbf{I})\mathbf{x} = \mathbf{0}$$

$$\begin{pmatrix} 3+3 & 2 \\ 3 & -2+3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 6 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This gives 3x + y = 0, which simplifies to y = -3x. Letting x = t, we get y = -3t.

$$\mathbf{x} = \begin{pmatrix} t \\ -3t \end{pmatrix} = t \begin{pmatrix} 1 \\ -3 \end{pmatrix}, \quad t \neq 0$$

We choose t = 1 to get $\mathbf{x}_2 = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$.

3. Construct Matrices:

$$\mathbf{D} = \begin{pmatrix} 4 & 0 \\ 0 & -3 \end{pmatrix} \quad \text{and} \quad \mathbf{P} = \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix}$$

Find P^{-1} :

$$\det(\mathbf{P}) = (2)(-3) - (1)(1) = -7$$
$$\mathbf{P}^{-1} = \frac{1}{-7} \begin{pmatrix} -3 & -1 \\ -1 & 2 \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 3 & 1 \\ 1 & -2 \end{pmatrix}$$

C MATRIX POWERS

C.1 CALCULATING MATRIX POWERS USING DIAGONALISATION

Ex 21: The matrix

$$\mathbf{P} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

diagonalises

$$\mathbf{A} = \begin{pmatrix} 8 & -5 \\ 10 & -7 \end{pmatrix}$$

with

$$\mathbf{P}^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \quad \text{and} \quad \mathbf{D} = \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}.$$

Calculate the matrix \mathbf{A}^4 .

Answer:

$$\mathbf{A}^{4} = \mathbf{P}\mathbf{D}^{4}\mathbf{P}^{-1}$$

$$= \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 3^{4} & 0 \\ 0 & (-2)^{4} \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 81 & 0 \\ 0 & 16 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1(81) & 1(16) \\ 1(81) & 2(16) \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 81 & 16 \\ 81 & 32 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 81(2) + 16(-1) & 81(-1) + 16(1) \\ 81(2) + 32(-1) & 81(-1) + 32(1) \end{pmatrix}$$

$$= \begin{pmatrix} 162 - 16 & -81 + 16 \\ 162 - 32 & -81 + 32 \end{pmatrix}$$

$$= \begin{pmatrix} 146 & -65 \\ 130 & -49 \end{pmatrix}.$$

Ex 22: The matrix

$$\mathbf{P} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$

diagonalises

$$\mathbf{A} = \begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix}$$

with

$$\mathbf{P}^{-1} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$$
 and $\mathbf{D} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$.

Calculate the matrix A^6 .

Answer:

$$\begin{aligned} \mathbf{A}^6 &= \mathbf{P} \mathbf{D}^6 \mathbf{P}^{-1} \\ &= \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2^6 & 0 \\ 0 & 1^6 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 64 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} \\ &= \begin{pmatrix} 1(64) & 2(1) \\ 1(64) & 1(1) \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} \\ &= \begin{pmatrix} 64 & 2 \\ 64 & 1 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} \\ &= \begin{pmatrix} 64(-1) + 2(1) & 64(2) + 2(-1) \\ 64(-1) + 1(1) & 64(2) + 1(-1) \end{pmatrix} \\ &= \begin{pmatrix} -64 + 2 & 128 - 2 \\ -64 + 1 & 128 - 1 \end{pmatrix} \\ &= \begin{pmatrix} -62 & 126 \\ -63 & 127 \end{pmatrix}. \end{aligned}$$

Ex 23: The matrix

$$\mathbf{P} = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}$$

diagonalises

$$\mathbf{A} = \begin{pmatrix} -9 & 12 \\ -8 & 11 \end{pmatrix}$$

with

$$\mathbf{P}^{-1} = \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix}$$
 and $\mathbf{D} = \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix}$.

Calculate the matrix A^3 .

Answer:

$$\mathbf{A}^{3} = \mathbf{P}\mathbf{D}^{3}\mathbf{P}^{-1}$$

$$= \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} (-1)^{3} & 0 \\ 0 & 3^{3} \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 27 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 3(-1) & 1(27) \\ 2(-1) & 1(27) \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} -3 & 27 \\ -2 & 27 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} -3(1) + 27(-2) & -3(-1) + 27(3) \\ -2(1) + 27(-2) & -2(-1) + 27(3) \end{pmatrix}$$

$$= \begin{pmatrix} -3 - 54 & 3 + 81 \\ -2 - 54 & 2 + 81 \end{pmatrix}$$

$$= \begin{pmatrix} -57 & 84 \\ -56 & 83 \end{pmatrix}.$$

C.2 CALCULATING MATRIX POWERS USING DIAGONALISATION

Ex 24: Consider the matrix $\mathbf{A} = \begin{pmatrix} 5 & -2 \\ 4 & -1 \end{pmatrix}$.

- 1. Find the eigenvalues λ_1 and λ_2 of matrix **A**.
- 2. Find the corresponding eigenvectors \mathbf{x}_1 and \mathbf{x}_2 .
- 3. Determine the matrices \mathbf{D} , \mathbf{P} , and \mathbf{P}^{-1} such that $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.
- 4. Hence, calculate the matrix A^6 .

Answer:

1. Find Eigenvalues:

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$
$$(5 - \lambda)(-1 - \lambda) - (-2)(4) = 0$$
$$-5 - 5\lambda + \lambda + \lambda^2 + 8 = 0$$
$$\lambda^2 - 4\lambda + 3 = 0$$
$$(\lambda - 3)(\lambda - 1) = 0$$

The eigenvalues are $\lambda_1 = 3$ and $\lambda_2 = 1$.

2. Find Eigenvectors:

• For $\lambda_1 = 3$:

$$\begin{pmatrix} 5-3 & -2 \\ 4 & -1-3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies \begin{pmatrix} 2 & -2 \\ 4 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \mathbf{0}$$
$$2x - 2y = 0 \implies x = y. \text{ Let } x = 1, \text{ then } y = 1.$$
$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

• For
$$\lambda_2 = 1$$
:

$$\begin{pmatrix} 5-1 & -2 \\ 4 & -1-1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies \begin{pmatrix} 4 & -2 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \mathbf{0}$$
$$4x - 2y = 0 \implies y = 2x. \text{ Let } x = 1, \text{ then } y = 2.$$

$$\mathbf{x}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

3. Find D, P, and P^{-1} :

$$\mathbf{D} = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}, \quad \mathbf{P} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

Calculate \mathbf{P}^{-1} :

$$\det(\mathbf{P}) = (1)(2) - (1)(1) = 1$$
$$\mathbf{P}^{-1} = \frac{1}{1} \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

4. Calculate A⁶:

$$\mathbf{A}^{6} = \mathbf{P}\mathbf{D}^{6}\mathbf{P}^{-1}$$

$$= \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 3^{6} & 0 \\ 0 & 1^{6} \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 729 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 729 & 1 \\ 729 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1458 - 1 & -729 + 1 \\ 1458 - 2 & -729 + 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1457 & -728 \\ 1456 & -727 \end{pmatrix}$$

Ex 25: Consider the matrix $\mathbf{B} = \begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix}$.

- 1. Find the eigenvalues λ_1 and λ_2 of matrix **B**.
- 2. Find the corresponding eigenvectors \mathbf{x}_1 and \mathbf{x}_2 .
- 3. Determine the matrices \mathbf{D} , \mathbf{P} , and \mathbf{P}^{-1} such that $\mathbf{B} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.
- 4. Hence, calculate the matrix \mathbf{B}^4 .

Answer:

1. Find Eigenvalues:

$$\det(\mathbf{B} - \lambda \mathbf{I}) = 0$$
$$(4 - \lambda)(4 - \lambda) - (1)(1) = 0$$
$$16 - 8\lambda + \lambda^2 - 1 = 0$$
$$\lambda^2 - 8\lambda + 15 = 0$$
$$(\lambda - 5)(\lambda - 3) = 0$$

The eigenvalues are $\lambda_1 = 5$ and $\lambda_2 = 3$.

2. Find Eigenvectors:

• For $\lambda_1 = 5$:

$$\begin{pmatrix} 4-5 & 1 \\ 1 & 4-5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \mathbf{0} \implies \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \mathbf{0}$$
$$-x+y=0 \implies y=x. \text{ Let } x=1, \text{ then } y=1.$$

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

• For $\lambda_2 = 3$:

$$\begin{pmatrix} 4-3 & 1 \\ 1 & 4-3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \mathbf{0} \implies \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \mathbf{0}$$
$$x+y=0 \implies y=-x. \text{ Let } x=1, \text{ then } y=-1.$$
$$\mathbf{x}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

3. Find D, P, and P^{-1} :

$$\mathbf{D} = \begin{pmatrix} 5 & 0 \\ 0 & 3 \end{pmatrix}, \quad \mathbf{P} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Calculate \mathbf{P}^{-1} :

$$\det(\mathbf{P}) = (1)(-1) - (1)(1) = -2$$
$$\mathbf{P}^{-1} = \frac{1}{-2} \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

4. Calculate B⁴:

$$\mathbf{B}^{4} = \mathbf{P}\mathbf{D}^{4}\mathbf{P}^{-1}$$

$$= \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 5^{4} & 0 \\ 0 & 3^{4} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 625 & 0 \\ 0 & 81 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} 625 & 81 \\ 625 & -81 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} 625 + 81 & 625 - 81 \\ 625 - 81 & 625 + 81 \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} 706 & 544 \\ 544 & 706 \end{pmatrix}$$

$$= \begin{pmatrix} 353 & 272 \\ 272 & 353 \end{pmatrix}$$