A STRUCTURE

A.1 DEFINITION

A.1.1 IDENTIFYING THE SIZE OF A MATRIX

Ex 1: What is the size of the following matrix?

$$\mathbf{A} = \begin{pmatrix} -2 & 0 & 7 \\ 1 & 9 & 4 \end{pmatrix}$$

Size:
$$\times$$

Ex 2: What is the size of the following matrix?

$$\mathbf{B} = \begin{pmatrix} -5\\0\\3\\1 \end{pmatrix}$$

Size:
$$\times$$

Ex 3: What is the size of the following matrix?

$$\mathbf{C} = \begin{pmatrix} 10 & 20 & 30 & 40 & 50 \end{pmatrix}$$

Ex 4: What is the size of the following matrix?

$$\mathbf{D} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

A.1.2 IDENTIFYING THE ENTRIES OF A MATRIX

Ex 5: Consider the matrix A defined as:

$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 5 \\ 7 & 2 & 6 \end{pmatrix}$$

What is the value of the entry a_{13} ?

$$a_{13} =$$

Ex 6: Consider the matrix **A** defined as:

$$\mathbf{A} = \begin{pmatrix} 8 & -1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & \frac{1}{2} \end{pmatrix}$$

What is the value of the entry a_{33} ?

$$a_{33} =$$

 $\mathbf{E}\mathbf{x}$ 7: Consider the matrix \mathbf{B} defined as:

$$\mathbf{B} = \begin{pmatrix} 1 & \sqrt{2} & 0 & 9 \\ -5 & 3 & 11 & 8 \end{pmatrix}$$

What is the value of the entry b_{12} ?

$$b_{12} = \boxed{}$$

Ex 8: Consider the matrix C defined as:

$$\mathbf{C} = \begin{pmatrix} \pi & 1 \\ -1 & 0 \\ 7 & \sqrt{3} \end{pmatrix}$$

What is the value of the entry c_{31} ?

$$c_{31} =$$

A.2 SPECIAL MATRICES

A.2.1 IDENTIFYING TYPES OF MATRICES

MCQ 9: Which of the following matrices is a square matrix?

$$\square \mathbf{A} = \begin{pmatrix} 1 & 5 & 9 \\ 0 & 3 & 7 \end{pmatrix}$$

$$\square \mathbf{B} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$

$$\Box \ \mathbf{C} = \begin{pmatrix} 1 & 5 \\ 0 & 3 \end{pmatrix}$$

$$\square \ \mathbf{D} = \begin{pmatrix} 1 & 5 & 9 \end{pmatrix}$$

MCQ 10: Which of the following matrices is a column matrix?

$$\Box \mathbf{A} = \begin{pmatrix} 2 & 0 & 9 \end{pmatrix}$$

$$\square \mathbf{B} = \begin{pmatrix} 7 \\ -1 \\ 4 \end{pmatrix}$$

$$\Box \mathbf{C} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\Box \ \mathbf{D} = \begin{pmatrix} 2 & 8 \\ 6 & 1 \end{pmatrix}$$

MCQ 11: Which of the following is the identity matrix of order 3?

$$\Box \ \mathbf{A} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Box \ \mathbf{B} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$\Box \ \mathbf{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\Box \ \mathbf{D} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

MCQ 12: Which of the following matrices is a row matrix?

$$\square \mathbf{A} = \begin{pmatrix} 5 \\ 10 \\ 15 \end{pmatrix}$$

- $\square \mathbf{B} = \begin{pmatrix} 5 & 10 \\ 15 & 20 \end{pmatrix}$
- $\square \mathbf{C} = \begin{pmatrix} 5 & 10 & 15 \\ 20 & 25 & 30 \end{pmatrix}$
- $\square \ \mathbf{D} = \begin{pmatrix} 5 & 10 & 15 \end{pmatrix}$

MCQ 13: What type of special matrix is $\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$?

- ☐ A row matrix
- ☐ A column matrix
- ☐ A zero matrix
- \square An identity matrix

MCQ 14: What type of special matrix is $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$?

- ☐ A square matrix
- ☐ A column matrix
- ☐ A zero matrix
- \Box An identity matrix

A.2.2 CONSTRUCTING SPECIAL MATRICES

Ex 15: Write the identity matrix of order 2, denoted I_2 .

$$\mathbf{I}_2 = \left(\begin{array}{c|c} & \\ & \end{array} \right)$$

Ex 16: Find the opposite matrix of $\mathbf{A} = \begin{pmatrix} -1 & 7 \\ 0 & -2 \end{pmatrix}$.

$$-\mathbf{A} = \left(\begin{array}{c|c} & & \\ & & \end{array}\right)$$

Ex 17: Find the opposite matrix of $\mathbf{A} = \begin{pmatrix} 9 & -2 & 0 & -11 \end{pmatrix}$.

$$-\mathbf{A} = \left(\begin{array}{c|c} \end{array} \right)$$

A.3 EQUALITY

A.3.1 IDENTIFYING EQUAL MATRICES

MCQ 18: Which of the following matrices is equal to matrix $\mathbf{A} = \begin{pmatrix} 4 & 0 \\ 9 & 1 \end{pmatrix}$?

- $\square \mathbf{B} = \begin{pmatrix} 4 & 9 \\ 0 & 1 \end{pmatrix}$
- $\Box \mathbf{C} = \begin{pmatrix} 2^2 & 0 \\ 3^2 & 1^2 \end{pmatrix}$
- $\square \ \mathbf{D} = \begin{pmatrix} 4 & 0 & 0 \\ 9 & 1 & 0 \end{pmatrix}$

 $\Box \mathbf{E} = \begin{pmatrix} 4 \\ 9 \\ 0 \\ 1 \end{pmatrix}$

MCQ 19: Which of the following matrices is equal to the row matrix $\mathbf{A} = (\sqrt{9} \quad 5 \quad 2^3)$?

- $\square \mathbf{B} = \begin{pmatrix} 3 \\ 5 \\ 8 \end{pmatrix}$
- $\Box \mathbf{C} = \begin{pmatrix} 8 & 5 & 3 \end{pmatrix}$
- $\Box \ \mathbf{D} = \begin{pmatrix} 3 & 5 & 8 \end{pmatrix}$
- $\square \mathbf{E} = \begin{pmatrix} 3 & 5 & 8 \\ 3 & 5 & 8 \end{pmatrix}$

MCQ 20: Let $\mathbf{A} = \begin{pmatrix} \frac{10}{2} & 0 \\ 1 & -3 \end{pmatrix}$. Which of the following statements is true?

- $\Box \mathbf{A} = \begin{pmatrix} 5 & 1 \\ 0 & -3 \end{pmatrix}$
- $\Box \mathbf{A} = \begin{pmatrix} 5 & 0 \end{pmatrix}$
- $\Box \mathbf{A} = \begin{pmatrix} 5\\1\\0\\-3 \end{pmatrix}$
- $\Box \mathbf{A} = \begin{pmatrix} 5 & 0\\ \sin(\frac{\pi}{2}) & -3 \end{pmatrix}$

A.3.2 SOLVING FOR UNKNOWNS USING MATRIX EQUALITY

Ex 21: Find the values of x and y that make the two matrices equal:

$$\begin{pmatrix} x & 7 \\ -2 & y+1 \end{pmatrix} = \begin{pmatrix} 5 & 7 \\ -2 & 3 \end{pmatrix}$$

$$x = \square$$
 and $y = \square$

Ex 22: Find the values of a and b such that the following matrices are equal:

$$\begin{pmatrix} a+b & 5\\ 1 & a-b \end{pmatrix} = \begin{pmatrix} 8 & 5\\ 1 & 4 \end{pmatrix}$$

$$a = \square$$
 and $b = \square$

Ex 23: Find the values of x and y for which the following matrix equality holds:

$$\begin{pmatrix} x & y \\ y & x \end{pmatrix} = \begin{pmatrix} y & -x \\ -x & y \end{pmatrix}$$

B MATRIX OPERATIONS

B.1 MATRIX ADDITION

B.1.1 VERIFYING THE CONDITION FOR ADDITION

MCQ 24: Which of the following matrix sums is possible?

$$\square \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 5 & 6 \end{pmatrix}$$

$$\square \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}$$

$$\square \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} + \begin{pmatrix} 7 & 8 \\ 9 & 10 \end{pmatrix}$$

$$\square \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$$

MCQ 25: Which of the following matrix sums is possible?

$$\square \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 & 5 & 6 \end{pmatrix}$$

$$\Box (1 \ 2 \ 3) + (4 \ 5)$$

$$\square \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$$

$$\square \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 5 \\ 6 \end{pmatrix}$$

MCQ 26: Which of the following matrix sums is possible?

$$\square \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$$

$$\Box \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 5 & 6 \end{pmatrix}$$

$$\square \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}$$

$$\square \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} + \begin{pmatrix} 7 & 8 \\ 9 & 10 \end{pmatrix}$$

B.1.2 CALCULATING MATRIX SUMS

Ex 27: Calculate the sum of the following matrices:

$$\begin{pmatrix} 5 & -1 \\ 2 & 8 \end{pmatrix} + \begin{pmatrix} -3 & 1 \\ 4 & -2 \end{pmatrix} = \begin{pmatrix} \boxed{} \\ \boxed{} \\ \boxed{}$$

Ex 28: Calculate the sum of the following column matrices:

$$\begin{pmatrix} 4 \\ -2 \\ 7 \end{pmatrix} + \begin{pmatrix} -1 \\ 5 \\ 3 \end{pmatrix} = \begin{pmatrix} \boxed{} \\ \boxed{} \\ \boxed{} \end{pmatrix}$$

Ex 29: Calculate the sum of the following row matrices:

$$\begin{pmatrix} 10 & 0 & -5 \end{pmatrix} + \begin{pmatrix} 2 & 4 & 5 \end{pmatrix} = \begin{pmatrix} \boxed{} & \boxed{} \\ \boxed{} \end{pmatrix}$$

Ex 30: Calculate the sum of the following matrices:

$$\begin{pmatrix} \frac{1}{2} & 3 \\ -1 & 0 \end{pmatrix} + \begin{pmatrix} \frac{1}{2} & -2 \\ 1 & 5 \end{pmatrix} = \begin{pmatrix} \boxed{ } & \boxed{ } \\ \boxed{ } & \boxed{ } \end{pmatrix}$$

B.1.3 CALCULATING MATRIX DIFFERENCES

Ex 31: Calculate the difference of the following matrices:

$$\begin{pmatrix} 10 & 8 \\ 5 & 6 \end{pmatrix} - \begin{pmatrix} 2 & -1 \\ 5 & 7 \end{pmatrix} = \begin{pmatrix} \boxed{} \\ \boxed{} \\ \boxed{} \end{pmatrix}$$

Ex 32: Calculate the difference of the following column matrices:

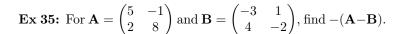
$$\begin{pmatrix} 9\\1\\-4 \end{pmatrix} - \begin{pmatrix} 5\\-2\\3 \end{pmatrix} = \begin{pmatrix} \boxed{}\\\boxed{}\\\boxed{}$$

Ex 33: Calculate the difference of the following row matrices:

$$\begin{pmatrix} 1 & -2 & 3 \end{pmatrix} - \begin{pmatrix} 1 & 2 & -3 \end{pmatrix} = \begin{pmatrix} \boxed{} & \boxed{} \\ \boxed{} & \boxed{} \end{pmatrix}$$

B.1.4 EVALUATING MATRIX EXPRESSIONS

Ex 34: For $\mathbf{A} = \begin{pmatrix} 5 & -1 \\ 2 & 8 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -3 & 1 \\ 4 & -2 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 4 & 2 \\ -2 & 3 \end{pmatrix}$, find $\mathbf{A} - (\mathbf{B} + \mathbf{C})$.



B.1.5 PROVING THE PROPERTIES OF ADDITION

Ex 38: For two square matrices of order 2, $\mathbf{A} = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} x' & y' \\ z' & w' \end{pmatrix}$, prove that $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$.

Ex 36: For
$$\mathbf{A} = \begin{pmatrix} 5 & -1 \\ 2 & 8 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} -3 & 1 \\ 4 & -2 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 4 & 2 \\ -2 & 3 \end{pmatrix}$, find $\mathbf{A} + (\mathbf{B} - \mathbf{C})$.

Ex 39: For three square matrices of order 2,
$$\mathbf{A} = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} x' & y' \\ z' & w' \end{pmatrix}$, and $\mathbf{C} = \begin{pmatrix} x'' & y'' \\ z'' & w'' \end{pmatrix}$, prove that $\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}$.

Ex 37: For
$$\mathbf{A} = \begin{pmatrix} 5 & -1 \\ 2 & 8 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} -3 & 1 \\ 4 & -2 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 4 & 2 \\ -2 & 3 \end{pmatrix}$, find $\mathbf{A} - (\mathbf{B} - \mathbf{C})$.

Ex 40: For a square matrix of order 2, $\mathbf{A} = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$, prove that $\mathbf{A} + (-\mathbf{A}) = \mathbf{0}$, where $\mathbf{0}$ is the 2×2 zero matrix.

Ex 46: For
$$\mathbf{A} = \begin{pmatrix} \frac{1}{2} & 4 \\ 0 & -1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 1 & -\frac{3}{2} \\ 2 & 0 \end{pmatrix}$, find $2\mathbf{A} + 3\mathbf{B}$.

B.2 SCALAR MULTIPLICATION

B.2.1 CALCULATING SCALAR PRODUCTS

Ex 41: Calculate the scalar multiplication:

$$2\begin{pmatrix} \frac{1}{2} & 3\\ -1 & 0 \end{pmatrix} = \begin{pmatrix} \boxed{} \\ \boxed{\phantom{0$$

 $\mathbf{Ex}\ \mathbf{42:}\ \mathbf{Calculate}\ \mathbf{the}\ \mathbf{scalar}\ \mathbf{multiplication:}$

$$5\begin{pmatrix} 2\\0\\-3\\1 \end{pmatrix} = \begin{pmatrix} \boxed{}\\\boxed{}\\\boxed{}\\\boxed{}$$

Ex 43: Calculate the scalar multiplication:

$$\frac{1}{2} \begin{pmatrix} 10 & -4 & 6 \end{pmatrix} = \begin{pmatrix} \boxed{} & \boxed{} \\ \boxed{} \end{pmatrix}$$

Ex 44: Calculate the scalar multiplication:

$$-4\begin{pmatrix} 1 & -3 \\ 5 & 0 \end{pmatrix} = \begin{pmatrix} \boxed{} \\ \boxed{} \\$$

B.2.2 EVALUATING MATRIX EXPRESSIONS

Ex 45: For
$$\mathbf{A} = \begin{pmatrix} 5 & -1 \\ 2 & 8 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} -3 & 1 \\ 4 & -2 \end{pmatrix}$, find $2(\mathbf{A} + \mathbf{B})$.

Ex 47: For
$$\mathbf{A} = \begin{pmatrix} \frac{1}{2} & 4 \\ 0 & -1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 1 & -\frac{3}{2} \\ 2 & 0 \end{pmatrix}$, find $\frac{1}{2}(\mathbf{A} - \mathbf{B})$.

Ex 48: For $\mathbf{A} = \begin{pmatrix} \frac{1}{2} & 4 \\ 0 & -1 \end{pmatrix}$, find 2(3**A**).

	B.3 MATRIX MULTIPLICATION			
	B.3.1 VERIFYING MULTIPLICATION	THE	CONDITION	FOR
	MCQ 53: Which of th	e following	g matrix products is	possible?
	$ \Box \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \times \begin{pmatrix} 5 & 6 \end{pmatrix} $			
	$\square \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \times \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$			
		6)		
	MCQ 54: Which of th		g matrix products is	possible?
B.2.3 SIMPLIFYING MATRIX EXPRESSIONS	$ \Box \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \times \begin{pmatrix} 5 & 6 \\ 7 & 8 \\ 9 & 10 \end{pmatrix} $			
	$\Box (1 2 3) \times (4 5)$			
Ex 49: For any matrix A , simplify the expression $2\mathbf{A} + 2(4\mathbf{A})$.				
	$ \begin{bmatrix} & 3 \\ & 5 \\ & 6 \end{bmatrix} \times \begin{pmatrix} 0 \\ & 0 \\ & 0 \\ $	1 1 1		
Ex 50: For any two matrices $\bf A$ and $\bf B$ of the same size, simplify	MCQ 55: Which of th	e following	g matrix products is	possible?
the expression $(\mathbf{A} - \mathbf{B}) + (\mathbf{A} + \mathbf{B})$.	$ \Box \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \times (5) $			
Ex 51: For any two matrices A and B of the same size, simplify the expression $3(\mathbf{A} + \mathbf{B}) - 3\mathbf{A}$.	$\square \begin{pmatrix} 1 \\ 2 \end{pmatrix} \times \begin{pmatrix} 3 \\ 4 \end{pmatrix}$			
	B.3.2 DETERMINING	THE SIZ	ZE OF THE PROD	UCT
	Ex 56: Let A be a marsize 2×3 . What is the s			matrix of
		Size:	<	
Ex 52: For any two matrices A and B of the same size, simplify the expression $(\mathbf{A} + \mathbf{B}) - (\mathbf{A} - \mathbf{B})$.	Ex 57: Let A be a massize 4×1 . What is the s			matrix of
		Size:	<	
	Ex 58: Let A be a marsize 4×2 . What is the s			matrix of
		Size:	<	

6

www.commeunjeu.com

B.3.3 CALCULATING MATRIX PRODUCTS

Ex 59: Calculate the multiplication of the following matrices:

$$\begin{pmatrix} 3 & 4 \end{pmatrix} \times \begin{pmatrix} 5 \\ 6 \end{pmatrix} = \begin{pmatrix} \boxed{} \\ \boxed{} \end{pmatrix}$$

Ex 60: Calculate the multiplication of the following matrices:

$$\begin{pmatrix} 3 & 1 \\ -2 & 4 \end{pmatrix} \times \begin{pmatrix} 5 \\ 2 \end{pmatrix} = \begin{pmatrix} \boxed{ } \\ \boxed{ } \\ \boxed{ } \end{pmatrix}$$

Ex 61: Calculate the multiplication of the following matrices:

$$\begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} \boxed{} \\ \boxed{$$

Ex 62: Calculate the multiplication of the following matrices:

$$\begin{pmatrix} 1 & 0 & -2 \\ 3 & 1 & 4 \end{pmatrix} \times \begin{pmatrix} 2 & 5 \\ -1 & 0 \\ 1 & -3 \end{pmatrix} = \begin{pmatrix} \boxed{} \\ \boxed{} \\ \boxed{} \\ \boxed{} \end{pmatrix}$$

Ex 63: Calculate the multiplication of the following matrices:

$$\begin{pmatrix} 5 \\ -1 \end{pmatrix} \times \begin{pmatrix} 3 & 2 \end{pmatrix} = \begin{pmatrix} \boxed{} \\ \boxed{$$

Ex 64: Calculate the multiplication of the following matrices:

$$\begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix} \times \begin{pmatrix} 1 & 5 \\ 2 & 6 \end{pmatrix} = \begin{pmatrix} \boxed{} \\ \boxed{$$

B.3.4 INVESTIGATING COMMUTATIVITY

Ex 65: Let $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 3 & 0 \\ 1 & -1 \end{pmatrix}$.

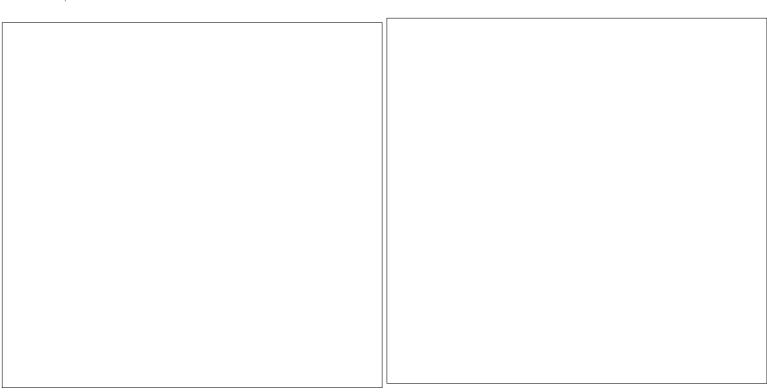
- 1. Calculate the product **AB**.
- 2. Calculate the product **BA**.
- 3. Hence, conclude whether AB = BA.

Ex 66: Let
$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 2 & 5 \\ 3 & 1 \end{pmatrix}$.

- 1. Calculate the product **AB**.
- 2. Calculate the product **BA**.
- 3. Hence, conclude whether AB = BA.

Ex 67: Let
$$\mathbf{A} = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$$
 and $\mathbf{I}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

- 1. Calculate the product AI_2 .
- 2. Calculate the product I_2A .
- 3. Hence, conclude whether $\mathbf{AI}_2 = \mathbf{I}_2 \mathbf{A}$.



B.3.5 EXPANDING MATRIX EXPRESSIONS	
Ex 68: For any square matrix ${\bf A}$, expand and simplify the expression ${\bf A}({\bf A}+{\bf I}),$ where ${\bf I}$ is the identity matrix of the same order as ${\bf A}.$	
Ex 69: For any square matrix A , expand and simplify the expression $(A + I)^2$, where I is the identity matrix of the same order as A .	
	Ex 73: Given that a square matrix A satisfies the relation $\mathbf{A}^2 = \mathbf{A} - \mathbf{I}$, find the expressions for \mathbf{A}^3 and \mathbf{A}^4 in the linear form $k\mathbf{A} + l\mathbf{I}$, where k and l are scalars and \mathbf{I} is the identity matrix.
Ex 70: For any two square matrices ${\bf A}$ and ${\bf B}$ of the same order, expand and simplify the expression $({\bf A}+{\bf B})^2.$	
Ex 71: For any square matrix \mathbf{A} , expand and simplify the expression $(\mathbf{A} + 3\mathbf{I})^2$, where \mathbf{I} is the identity matrix of the same order as \mathbf{A} .	

B.3.6 SIMPLIFYING POWERS OF A MATRIX

Ex 72: Given that a square matrix **A** satisfies the relation $\mathbf{A}^2 = \mathbf{A} + \mathbf{I}$, find the expressions for \mathbf{A}^3 and \mathbf{A}^4 in the linear form $k\mathbf{A} + l\mathbf{I}$, where k and l are scalars and \mathbf{I} is the identity matrix.

Ex 74: Given that a square matrix **A** satisfies the relation $\mathbf{A}^2 = 2\mathbf{A} + 3\mathbf{I}$, find the expressions for \mathbf{A}^3 and \mathbf{A}^4 in the linear form $k\mathbf{A} + l\mathbf{I}$, where k and l are scalars and \mathbf{I} is the identity matrix.

- 1. Calculate the product \mathbf{AB} .
- 2. Calculate the product **BA**.
- 3. What can you conclude about the relationship between matrices ${\bf A}$ and ${\bf B}?$

C INVERTIBLE MATRICES

C.1 DEFINITION

C.1.1 VERIFYING AN INVERSE BY DEFINITION

Ex 75: Let
$$\mathbf{A} = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$.

- 1. Calculate the product **AB**.
- 2. Calculate the product **BA**.
- 3. What can you conclude about the relationship between matrices ${\bf A}$ and ${\bf B}$?

Ex 77: Let
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}$.

- 1. Calculate the product **AB**.
- 2. Based on this result, can you conclude whether ${\bf B}$ is the inverse of ${\bf A}$?

Ex 76: Let $\mathbf{A} = \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix}$.

C.1.2 PROVING	PROPERTIES	OF THE	INVERS

Ex 78: Prove that the identity matrix, **I**, is invertible and that its inverse is itself (i.e., $\mathbf{I}^{-1} = \mathbf{I}$).

Ex 81: Let **A** be an invertible matrix. Suppose there are two matrices, **B** and **C**, such that AB = BA = I and AC = CA = I. Prove that B = C. (This shows the inverse is unique).

Ex 79: Let A, B, and C be square matrices of the same order. Suppose that A is an invertible matrix. Prove that if AB = AC, then B = C.

C.2 FINDING THE INVERSE OF A 2X2 MATRIX

C.2.1 CALCULATING THE DETERMINANT

Ex 82: Calculate the determinant of the matrix $\mathbf{A} = \begin{pmatrix} 5 & 2 \\ 3 & 4 \end{pmatrix}$.

$$\det(\mathbf{A}) = \boxed{}$$

Ex 83: Calculate the determinant of the matrix $\mathbf{B} = \begin{pmatrix} -1 & 0 \\ 7 & -5 \end{pmatrix}$.

$$\det(\mathbf{B}) = \boxed{}$$

Ex 84: Calculate the determinant of the matrix $\mathbf{C} = \begin{pmatrix} 6 & 3 \\ 8 & 4 \end{pmatrix}$.

$$\det(\mathbf{C}) = \boxed{}$$

Ex 80: Let **A** be an invertible square matrix, and let **X** and **B** be matrices of compatible sizes. Prove that if $\mathbf{AX} = \mathbf{B}$, then $\mathbf{X} = \mathbf{A}^{-1}\mathbf{B}$.

C.2.2 FINDING THE INVERSE OF A 2X2 MATRIX

Ex 85: Determine if the inverse of the matrix $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ exists and if so find it exists, and if so, find it.

Ex 88: Determine if the inverse of the matrix $\mathbf{A} = \begin{pmatrix} 5 & 6 \\ 3 & 4 \end{pmatrix}$ exists, and if so, find it. exists, and if so, find it.

Ex 86: Determine if the inverse of the matrix $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ exists, and if so, find it.

> **Ex 89:** Determine if the inverse of the matrix $\mathbf{A} = \begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix}$ exists, and if so, find it.

Ex 87: Determine if the inverse of the matrix $\mathbf{A} = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$ exists, and if so, find it.

C.2.3 FINDING THE CONDITION FOR INVERTIBILITY

Ex 90: Find the value(s) of k for which the matrix $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & k \end{pmatrix}$ is invertible.

Ex 93: Find the value(s) of k for which the matrix $\mathbf{A} = \begin{pmatrix} 1 & k-1 \\ k & 2 \end{pmatrix}$ is invertible.

Ex 91: Find the value(s) of k for which the matrix $\mathbf{A} = \begin{pmatrix} 2k & 3 \\ k & 1 \end{pmatrix}$ is invertible.

D APPLICATIONS

D.1 SOLVING SYSTEMS OF LINEAR EQUATIONS

D.1.1 WRITING A SYSTEM IN MATRIX FORM

Ex 94: Write the system $\begin{cases} 2x + 5y = 2 \\ x + 3y = 5 \end{cases}$ in matrix form.

Ex 92: Find the value(s) of k for which the matrix $\mathbf{A} = \begin{pmatrix} k & 1 \\ 0 & k+1 \end{pmatrix}$ is invertible.

Ex 95: Write the system
$$\begin{cases} x - 2y = 7 \\ 3x + y = 0 \end{cases}$$
 in matrix form.

Ex 96: Write the system $\begin{cases} x+y-z &= 9\\ 2y+4z &= -2 \text{ in matrix form.}\\ 5x-6z &= 0 \end{cases}$

D.1.2 SOLVING SYSTEMS WITH THE INVERSE METHOD

Ex 97: Use the matrix method to solve the following system of linear equations:

$$\begin{cases} 2x + 5y &= 2\\ x + 3y &= 5 \end{cases}$$

 \mathbf{Ex} 99: Use the matrix method to solve the following system of linear equations:

$$\begin{cases} 5x - 2y &= 1\\ 4x - y &= 4 \end{cases}$$

 \mathbf{Ex} 98: Use the matrix method to solve the following system of linear equations:

$$\begin{cases} 3x + y &= 8 \\ x + 2y &= 9 \end{cases}$$